§ software

webMethods SWIFT Module
Installation and User’s Guide

Version 7.1

June 2011

webMethods

This document applies to webMethods SWIFT Module Installation and User’s Guide Version 7.1 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2009-2011 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America, and/or
their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to “License
Texts, Copyright Notices and Disclaimers of Third-Party Products”. This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ESTD-SWIFT-IUG-71SP1-20111111

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

Aboutthis GUIde 15
DOCUMENE TIHIES . . ettt 15
Document CONVENLIONS v vttt ettt et e et e e 18
Documentation Installation ... 18
Online Information e 19

Part . Getting Started e 21

I O30T o] £ 23

What Is the SWIFT NetwWork?o s 24
What Is SWIFTNE? ... 24
What Is SWIFTNet Link? e 24

SNL MeSSaging SEIVICES ... vttt et 24
SWIFTNet INterACto 24
SWIFTNet FileACt ... e 25
SWIFTNELFIN .o e 25
SWIFTNEEBIOWSE . . . vttt 25

What Is webMethods SWIFT Module?, 25
webMethods SWIFT Module Packagesco i 27

SWIFT FIN Component 27
What Is a SWIFT FIN MESSage?t 28

About SWIFT Message Format 28
What Is @ SWIFT MX MESSAgE? . ..o it 29
SWIFT FIN Component Partsot e 30
SWIFT FIN Component Architecture ..., 31
SWIFT FIN Component FEAtUIES e 33

SWIFTNet COmpONeNt e 36
Client Functionalityco i 37
Server Functionality 37
SNL Request and Response Primitives Support ..., 38
SWIFTNet Component Architecture s 38
SWIFTNet Component Real-Time Modec it 39

Real-Time INterACt 40
Real-Time FileACt o 40
SWIFTNet Component Store-and-Forward Mode 42
Store and Forward InterAct 43
Store and Forward FileACt 44
Retrieving Messages and FilesfromaQueue 45
PULMOOE .. 45
PUSNIMOOE . .. 47
Fetchinga FilefromaQueueo, 48

webMethods SWIFT Module Installation and User’s Guide Version 7.1 3

Server Application Processing of SNL Primitives 48

SWIFT File Transfer Adapter Support ... 49

FPML Message Exchange Support 50

2. Installing webMethods SWIFT Module ... i e 51
OV BIVIBW o ettt et e e e e e 52
REQUITEMENES . . oo 52
Installing webMethods SWIFT Module 7.2 SP1 ...t 52
Installing the SWIFT Module Samples Package oL, 54
Upgrading to SWIFT Module 7.1 SPL iians 54
Before YOU BEgIN 54
Upgrading from SWIFT Module 7.1o 55
Upgrading from SWIFT FIN Module 6.1 Service Pack4 57
Upgrading from SWIFTNet Module 6.0.1 Service Pack 1 58
Uninstalling SWIFT Module 7.1 SP1 60
Partll. Configuring SWIFT Module for Message Exchange Over SAA 61
3. Configuration Steps for Message Exchange over SAA ...t 63
OV B W . o oo 64
Step 1: Import BICPIUSIBAN LISto 64
Step 2: Define Trading Partner Profiles i 64
Step 3: Create Validation Rules 65
Step 4: Write Inbound and Outbound Mapping Servicest 65
Step 5: Modify Trading Partner Agreementscoirrrreeiiiiinnnenns 65
Step 6: Manage SWIFT Message Processing Rules and Message Execution 66
Step 7: Configure SWIFT Interfacest 66
Step 8: Configure Notification Processing ... 66
Step 9: Configure MT/MX Message Exchange Over SAA, 67

4. Importing BICPIlusIBAN and SEPA Routing Directories 69
O B B o ottt 70
Using the Search BIC Information Tool, 70
IMPOItING LiStSttt 71
Creating an Empty Database Table ..., 72
IMporting @ Listt 72
Business Examples of Using the BICPIUSIBAN Directory, 72
Business Examples of Using the SEPA Routing Directory 73
Searching BIC Information 74

5. Defining Trading Networks Information it 77
O B W . o oo 78
About Message RECOIAS 78
Creating Message ReCordsoiiiiiii i 78

About Trading Partner Profiles 80
Why Are Trading Partner Profiles Important?t 81

4 webMethods SWIFT Module Installation and User’s Guide Version 7.1

Defining Trading Networks Profiles o i, 81

About TN Document Types for SWIFT MeSsagesScovvviiiieiinnnnnn.. 82

6. Creating Validation RUIES 83
Creating Validation Rules 84
Creating Network Validation Ruleso it 84
Creating Usage Validation Rules 85

7. Creating Inbound and Outbound Mapping Services 87
What IS Message “Mapping?”t 88
Why Create an Outbound Mapping Service? ..., 88

Why Create an Inbound Mapping Service? ..., 88
Example of Mapping a Message 88
Creating an Outbound Mapping SErviCeooiiiiiiii i 89
INPULS @Nd OULPULS . . . oot 90

Flow OperationS to USeot e 90
Creating an Inbound Mapping SErviCevviiiiiii i 91
Parsing to the Subfield Level 91
Reusing Mapping SEIVICES\t 92

8. Customizing Trading Partner Agreementsccoviieeiiiiinnennns 93
OVBIVIBW . v ot sttt et e et e e e e e e e 94
How Does SWIFT Module ldentify a TPA? ... oo e 94
Modifying the TPA .. 94

9. Configuring Processing Rules to Send and Receive SWIFT FIN Messages 101
OVBIVIBW . v e ettt et ettt e e e e 102
Sending Messages to SWIFT 102
Preliminary Steps for Sending MeSSageso vvv v 102
Assigning the ProcessingRUle 102

Step 1: Define the Processing Rule Criteriaot 102

Step 2: Define the Processing Action, 103

Step 3: Create a Service to Maptothe DFD Format 103

Step 4: Submit the Document to Trading Networks 103

Receiving Messages from SWIFT e 103
Preliminary Steps for Receiving Messages, 104

Defining the ProcessingRule ... i 104

Inbound Message ProCessingvvureei i 104

10. Using SWIFT Module SDK SEIVICES\ vv et 105
What IS the SWIFT SDK . ..o 106
About the SWIFT Module SDK Features e 106
SWIFT Module SDK Document FOrmatsc.c.vvveeniiiinneeenninnn. 107

SWIFT Module SDK Folder Organization, 107

webMethods SWIFT Module Installation and User’s Guide Version 7.1 5

11.

12.

13.

14.

Configuring SWIFT Interfacest e 109

OV B B oo 110
Using WebSphere MQ Adapter to Communicate with SWIFT 110
Configuring the WebSphere MQ Adapter 110
Using the CASmf Services to Communicate with SWIFTot 112
webMethods CASME SEIVICES e 112
Configuring the CASmf Interfaceo 113
Using AFT to Communicate With SWIFT e 116
Configuring AFT for Inbound Messages 116
Configuring AFT for Outbound MeSSagescovviiiiinneeeeniinnn.. 117
Configuring Notifications for Messages in XMLV2 Format 119
O B BI oooe 120
Configuring SWIFT Module to Handle Notifications 120
Step 1: Import Trading Networks Information for Notifications 120
Step 2: Configure SWIFT Module to Handle Notifications 122
Step 3: View Notifications and Related Messagesc..ccvvinnn.. 122
Notification Details Displayed in the Transaction Details Panel 122

Using SAA to Exchange XML v2 Wrapped MT and MX Messages 125
O B B o oo 126
Exchanging MT Messages in XMLV2 Formatcovviiiiiniinnniinnnns 126
Step 1: Configure Trading Partners for Message Exchange 126
Step 2: Create Trading Networks ltems 127
Viewing Trading Networks Assets for an MT Message 128

About TN DOCUMENE TYPES vt ettt e 128

About Processing RUIES 129

About Trading Partner Agreementsc.oiiiiiininiinann. 131

Step 3: Send the MT Message to SAA i 133
Step 4: Reconcile the Notification from SWIFT with the Original MT Message 133
Exchanging MX Messages through SAA 134
Step 1: Configure Trading Partners for Message Exchange 134
Step 2: Create Trading Networks ASSetsccoiiiiiiiii . 134
Viewing or Modifying Trading Networks Assets for an MX Message 135

Step 3: Create IS Schema and IS Document Typecovvvvveeninnn.. 137
Step 4: Send the MX Message to SAA 138
Step 5: Receive an MX Document from SAA 139
Validating MX Messages Conform to SWIFT Standards 139
Schema Validation of MX MESSAgES .« .. iiiiie it 140
Extended Validation of MX MeSSAgeSc.vviiiiiii i 140
Working with Market PractiCest 143
0 144
Creating Market PraCtiCest 144
Creating Market Practice Rules 145

webMethods SWIFT Module Installation and User’s Guide Version 7.1

Part lll. Configuring SWIFT Module for FileAct and InterAct Message Exchange Over SAG 147

15. Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA . 149

OV B B . et 150
Step 1: Prepare the Server to Handle Requests, 150
Configuring SWIFT Alliance Gatewayc.covveieiiiiineeeeniinnn. 151
Configuring the SWIFTNet Componentc..uiiiiiiiiiiiiiiinnns 151
Configuring Trading Networks Informationt 154
Step 2: Prepare the Clientto Handle Requestst 156
Step 3: Invoke the Remote File Handleroo 159
16. Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA . 161
O B B ettt 162
Step 1: Prepare the Server to Handle Requests, 163
Configuring SWIFT Alliance Gatewaycovviiiiiiniiiennnneana... 163
Configuring the SWIFTNet Component 164
Configuring Trading Networks Information 168
Step 2: Prepare the Clientto Handle Requestst 169
Step 3: Initialization and Request-Time Operations for Your Client or Server Application . 172
Initializing the Client or Server Application ..., 172
Request-Time Operationsoiiiii e 172
Client Applicationo 172

Server Application 173
TermINationo 174

17. Using FTA to Transfer Files over SWIFTNet oo, 175
O B B . . ettt 176
Placing a Data File in the SAG Output Directoryccovvieiiiiiinnnnnn., 176
Creatinga Companion File o i 176
Companion Parameter File Data Structure, 176
Generating Data File Processing Status Reports ..., 176
Report File Data Structure 177

A SBIVICES ..ttt 179
WMFIN Package 180
wm.casmfinit Folder 181
wm.casmfinit:shutdown 181
WM.CaSMEINIESTAMUD . ..o 181
wm.casmitrp Folder 181
wm.casmf.trp:casmfSendReceiveSchedule L 182
wm.casmf.trp:processOutboundMessageooiii i 182
wm.casmftrp:sendAndRECEIVE 182
wm.casmf.trp:CASmfOutboundTrigger ... 183
wm.casmutil Folder 183
wm.casmf.util:getOutboundMessageFolder i, 183
wm.finbic Folder 183

webMethods SWIFT Module Installation and User’s Guide Version 7.1 7

wm.fin.bic:deriveBICTOmMIBANot 183

wm.finbic.generatelBAN 185
wm.finbic:getBICINfO 185
wm.fin.bic:getBICPIUSINfO ... 186
wm.fin.bic:inSertIBANLISL 187
WMLAiNDICINSEIISLISt ... 187
wmfinbicinsertSRLISt 188
wm.fin.bicvalidateBankID 188
wm.fin.bicvalidateBICCode ... 189
wm.finbicvalidateBICIBAN 189
wmLAinbiC:BICINTO .. o 190
WMLAINdEV FOlder . ..o o 190
wm.fin.devimportFINItems 190
wmfindfd Folder 191
wm.fin.dfd:convertBizZNameFormat i 192
wm.fin.dfd:convertTagFormatt 193
wmLfin.dfd:getDFDLISt ... 194
wmfindfd:loadDFD 194
wmfindfd:unloadDFD 194
wmfin.dfd:unloadDFDS o 195
WMLAIN.AOC FOldBY . ..o 195
wm.findoc:FINIData_INputo 196
wm.fin.doc:FINIData_Output 196
wm.fin.doC:FININboUNdMESSAgEt 196
wm.fin.doc:FINOuthoundMessaget 196
wm.findoc:MessageHeader 197
WM.fiN.AOC:USEIParameters oot e 197
wmfindoc.catF:MTF2L ... 197
wm.fin.doc.header Folder 197

wm.findoc.trailer Folder i 197
wm.fin.doc.trailer:Trailer 198
wm.finformat Folder 198
wm.finformat.conformFINIData 198
wm.finformat:iconformiData 198
wm.fin.format:convertFINBIOCKATOISDOCt 199
wm.fin.format:.convertFINTOIDAtat 199
wm.fin.format:.convertiDataTOFIN 200
wm.fin.format.convertiSMTDocToFINFormat, 200
wm.fin.format:flushTemplateCache i, 201
wm.finformatxmiTolDatat 201
WMLAindnit Folder 201
WILAININIESTAMUD . . .o 201
WIMLAINNIESAULdOWN . . .o 202
wmfinmap Folder 202
wm.fin.map:mapApplicationBlockHeader 202

webMethods SWIFT Module Installation and User’s Guide Version 7.1

wm.fin.map:mapApplicationHeader 202

wm.fin.map:mapBasicBlockHeader 203
wm.fin.map:mapBasiCHeader 203
wm.fin.map:mapOutbound 204
wm.fin.map:mapOutboundMessage i 204
wm.finmap:mapTrailer 204
wm.finmap:mapUACK .. 205
wm.fin.map:mapUserBlockHeader 205
wm.fin.map:mapUserHeader 205
wm.fin.marketPractice Folder 206
wmfinrules Folder 206
wm.fin.rules:checkCodeOrder 206
WIMLAINTUIESICONEAINS . . . e e 206
wm.fin.rules:getDuplicateCodeListc i 207
wm.fin.rules:setErrorDOCUMENt 207
wm.finsepa Folder 207
wm.fin.sepa:checkOperationalReadingsscooviiiiiiiiiineeeeninnn, 207
wm.fin.sepa:getAvailablePaymentChannels o it 208
wm.fin.sepa:getOtherPaymentChannel i, 209
wm.fin.sepa:getPreferredPaymentChannel L. 210
wm.fin.sepa:validateAdherenceStatus 211
wm.fintransport Folder ... 212

wm.fin.transport AFT Folder 212
wm.fin.transport AFT:AFTOutboundTriggero 212
wm.fin.transport. AFT:generateUniqueFileNameoooiiaas, 212
wm.fin.transport. AFT:processinboundFile i 213
wm.fin.transport. AFT:processincomingFile i 213
wm.fin.transport. AFT:processIncomingMessage oo e it 213
wm.fin.transport. AFT:processOutboundFile i, 214
wm.fin.transport. AFT:processOutgoingFilecc i 214

WM.fiNtransportMQSENESt 214
wm.fin.transport. MQSeries:getListenerService i 215
wm.fin.transport. MQSeries:getMQSeriesListenerService oo 215
wm.fin.transport. MQSeries:MQSeriesPutTriggero 216
wm.fin.transport. MQSENeSIPUL oo 216
wm.fin.transport. MQSeries:putMessageoriiiii 216

WMLAINAranSpoOrt.propertyt 217
wm.fin.transport.property:getProperty 217
wm.fin.transport.property:listProperties 217
WL AINrANSPOML. TS . . o 218
wm.fin.transport. Test:FINSamplelnboundMessage, 218
wm.fin.transport. Test:FINSamplelnboundMessageTrigger ...t 218
wm.fin.transport. Test:FINSampleOutboundMessageTriggero... 219
wm.fin.transport. Test:processFiNMSYt 219

wmfintrp Foldero 219

webMethods SWIFT Module Installation and User’s Guide Version 7.1 9

wm.fin.trp:FINInboundMessageTriggerooviiii 220

WL DIECRIVE . .o o 220
WMLfINAPIreCEIVEMESSAR . ..\t 220
WILAINTDISENd . . o 221
WL AINR:SENdMESSAgE ... oot 221
wmfinutils Folder 222
wm.fin.utils:generateUniqueldentifier i 222
wm.fin.utils:getFINMessageAndIDS 222
wmfinvalidation Folder 223
wm.fin.validation:getErmorMesSageoovuiii 223
wm.fin.validation:validateFinMsg 223
wm.fin.validation:validatelDataooo oo 223
wm.fin.validation:validatelDataUtil 224
wm.sdkfinFoldero 224
WM.SAK.TEC.MIXSAL VYA .. .o 225
wm.sdk.docgenerator:createMTISDocFromSchemat i, 225
wm.sdk.docgenerator:createMXISDocFromSchema 225
wm.sdk.fin.converter:convertMTBIOCKATOMTXMLo i i ... 226
wm.sdk.fin.converter.convertMTFlatFileTOMTXML, 227
wm.sdk.fin.converter:convertMTXMLblock4ToMTFlatFile 229
wm.sdk.fin.converter:convertMTXMLTOMTFlatFile 230
wm.sdk.fin.validator:validateMTXMLt 231
Supported SDK MX MeSSage TYPES .« ..o vve et 232

SDK Eror DESCIPLONS v v ettt et e e e e 250
wm.unifi Folder 250
wm.unifi.convertXMLtoIData 251
WINLUNITLETANPOSAA 251
wm.unifiutils.validateRules 252
wm.unifivalidation Folder 252
wm.unifivalidation:validateBEl oo 252
wm.unifivalidation:validateBIC 253
wm.unifi.validation:validateCountryCode i i, 254
wm.unifi.validation:validateCurrencyCode, 255
wm.unifivalidation:validatelBAN ... 255
wm.unifi.validation:validateMXMSg 256
Process Information Section of the XMLv2 Parameters Document 257
wmxmiv2.dev Folder ... 259
wm.xmiv2.dev:createSWIFTIEMS 260
wmxmiv2.doc Folder 261
wm.xmiv2.doc:XMLV2Params 261
wm.xmiv2.notifications Folder 261
wm.xmlv2.notifications:handleDeliveryNotificationsoo.in. 261
WM.XMIV2.procesS FOIOEN 262
wm.XmIv2.process:CreateSAADOCttt 262
wm.xmlv2.process:getinboundMessageTypet 262

10

webMethods SWIFT Module Installation and User’s Guide Version 7.1

wm.xmlv2.process:outbound 263

wm.xmlv2.process:processinbound 263
wm.xmlv2.process:reconcilelnboundDocuments 264
wm.xmiv2.transport Folder 264
wm.xmlv2.transport:submitDataPDU 264
wmxmiV2.Utils Folder ... 264
wm.xmiv2.utils:encodeBIockd 265
wm.xmlv2.utils:encodeFiNMEeSSaget 265
wmxmiv2.utils:formatXMLV2 ... 265
wm.xmiv2.utils:getDataPDUsSFromFile i 266
wm.xmiv2.utils:putinBatchFile o 266
WmSWIFTCommon Packageoouriii e 267
com.wm.common.CacheHandler Folder i, 267
com.wm.common.CacheHandler.getContextForMessagePartner 267
com.wm.common.CacheHandler.saveContextForMessagePartner 268
com.wm.common.docs Folder 268
comwm.common.Init Folder i 268
com.wm.common.services Folder 268
com.wm.common.services.createTNDocFOrMQReSpoNseovvvvvenn.. 269
com.wm.common.services.getEnvAndXMLRegFromMQResponse 269
COM.WM.COMMON.SEIVICES.GetSAgENV 269
com.wm.common.services.getSagReqENVASSHNg 270
com.wm.common.services.getXMLData 270
com.wm.common.services.handleContextResponse ..., 270
com.wm.common.services.submitContextResponseciiiiii.., 271
com.wm.common.services.submitMQResponseToTNo... 271
com.wm.common.services.submitRequestToTN, 271

comwm.common.Util Folder 272
com.wm.common.Util.createSagReqEnv 272
com.wm.common.UtiLinvokeMQService 272
com.wm.common.Util:migrateServices 272
com.wm.common.Util.resolveNameSpaceAndEntity 273
WIMLSWITLAOC FOlder ... o 274
WmEstdCommonLib Packaget 274
WmSWIFTNetClient Package ...t iiaes 274
wm.swiftnet.client.doc Folder o 275
wm.swiftnet.clientinit Foldero i 275
wm.swiftnet.client.init:printRemoteErrors 275
wm.swiftnet.client.init:shutdown 275
wm.swiftnet.clientinit:startup 276
wm.swiftnet.clientmg Folder ... i 276
wm.swiftnet.client.mg:procesSRequUESE 276
wm.swiftnet.client.mg:sendTOMQo 276
wm.swiftnet.client.property Folder e 277
wm.swiftnet.client.property:getProperty 277

webMethods SWIFT Module Installation and User’s Guide Version 7.1 1

wm.swiftnet.client.services Folder 277

wm.swiftnet.client.services:createContextRequest 277
wm.swiftnet.client.services:destroyContextRequesto, 278
wm.swiftnet.client.services:exchangeFileRequest, 278
wm.swiftnet.client.services:exchangeRequest, 279
wm.swiftnet.client.services:exchangeSnFRequestc i, 279
wm.swiftnet.client.services:fetchFileRequesto i, 279
wm.swiftnet.client.services.getFileStatusRequest L 280
wm.swiftnet.client.services:initRequest 280
wm.swiftnet.client.services:pullSnFRequest i 281
wm.swiftnet.client.services:sendRequest i 281
wm.swiftnet.client.services:sendSynchronousRequest, 281
wm.swiftnet.client.services:signEncryptRequest, 282
wm.swiftnet.client.services:SWArgUMENtSttt 282
wm.swiftnet.client.services:swCallt 283
wm.swiftnet.client.services:termRequest 283
wm.swiftnet.client.services:verifyDecryptRequest i, 283
wm.swiftnet.client.services:waitRequest 284

wm.swiftnet.clienttransport Folder 284
wm.swiftnet.client.transport.FTA:generateCompanionFile 284
wm.swiftnet.client.transport.FTA:scanFOrReports ..., 285
wm.swiftnet.client.transport. FTA:SUbMItTOTN o i, 285

wm.swiftnet.client.util Folder 285
wm.swiftnet.client.utilformatXML 285
WmSWIFTNetServer Package ..o e 286
wm.swiftnet.server.doc Folder 286
wm.swiftnet.server.init Folder 286
wm.swiftnet.server.init:printRemoteErrors 286
wm.swiftnet.server.nit:shutdown o 287
wm.Swiftnet.server.init:startup 287
wm.swiftnet.server.mg Folder 287
wm.swiftnet.server.mg.inbound.getinfoFromNotificationDoc 288
wm.swiftnet.server.mg.inbound.handleSWIFTRequestccoovin.t. 288
wm.swiftnet.server.mg.trp.respond 288
wm.swiftnet.server.mg.util.sendToMQ 289
wm.swiftnet.server.property Folder 289
wm.swiftnet.server.property:getCommonProperties, 289
wm.swiftnet.server.property:getProperty ... 290
wm.swiftnet.server.property:listProperties 290
wm.swiftnet.server.property:reloadPropertiesc i 290
wm.swiftnet.server.property:SetPropertyo 291
wm.swiftnet.server.services Folder ... 291
wm.swiftnet.server.services:handleRequestc i 291
wm.swiftnet.server.services:swCall 291
wm.swiftnet.server.util Folder o 292

12

webMethods SWIFT Module Installation and User’s Guide Version 7.1

wm.swiftnet.server.uti:formatXML
SWIFTNet Server and CENt EITOrSottt
Services and the SNL Request and Response Primitiveso....

XML Parsing Templates for SWIFT FIN MeSSagesoovvviiineninnnn...
OVBIVIBW . . e ettt et e et e e e e
SWIFTMessage Data
Sample SWIFT Message Definition ...,
Parsing Template StrUCIUrEottt
Sample Parsing Templatet e
Block Syntax of a Parsing Template
Line Attribute Syntax of a Parsing Template
HINt PrOCESSING . v\ttt
Miscellaneous NOtES o

Administering webMethods SWIFT ModuleinaCluster
What Is webMethods Integration Server Clustering? ...,
SWIFT Module in a Clustered Environment ...,
Clustering Requirements for Each Integration Serverina Cluster
Clustering Requirements When Installing SWIFT Module Packages
Configuring SWIFT Module in a Clustered Environment
Replicating Packages and Configuration Information to Integration Servers

SWIFT Module Configuration Information

Trading Networks Configuration Information
Clustering Implementation Considerations ...,
Ll I 01 0
CASMETrANSPOM
MQHA TransSport

Examples of Data PDU Content of Documents,
Data PDU Content of Different Types of Notifications
Data PDU Content of a Delivery Notification Example
Data PDU Content of a Delivery Report Example
Data PDU Content of a History Report Example
Data PDU Content of a Transmission Report Example
MT/MX Message Data PDU CONtentouneei e
MT Message Data PDU ContentExample

MX Message Data PDU Content Example,
xmldata (Data PDU)

MX HEAdEr ..

MX DOCUMENE . .ottt

webMethods SWIFT Module Installation and User’s Guide Version 7.1

13

14

webMethods SWIFT Module Installation and User’s Guide Version 7.1

About this Guide

This guide describes how to install, configure, and use webMethods SWIFT Module.

To use this guide effectively, you should:

Have a basic knowledge of SWIFT and SWIFT terminology. For more information, go
to http://www.swift.com.

Have installed all necessary SWIFT software. You must work with SWIFT to
determine the appropriate software needs for your company.

Have installed webMethods Integration Server, webMethods Developer, My
webMethods Server, webMethods Trading Networks, Software AG Designer, and
webMethods Monitor. For more information about installing these components, see
Installing webMethods Products.

Have installed the webMethods WebSphere MQ Adapter. For more information, see
webMethods WebSphere MQ Adapter Installation and User’s Guide.

Be familiar with webMethods Integration Server, Integration Server Administrator,
and webMethods Developer and understand the concepts and procedures described
in Developing Integration Solutions: webMethods Developer User’s Guide.

Be familiar with webMethods Trading Networks and understand the concepts and
procedures described in the various webMethods Trading Networks guides.

Be familiar with using Software AG Designer for creating processes and tasks and
understand the concepts and procedures described in the Software AG Designer Online
Help.

Be familiar with webMethods Monitor and understand the concepts and procedures
described in Monitoring BPM, Services, and Documents with BAM: webMethods Monitor
User’s Guide.

Document Titles

Some webMethods document titles have changed during product releases. The following
table will help you locate the correct document for a release on the Software AG
Documentation Web site or the Empower Product Support Web site.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 15

http://www.swift.com

About this Guide

Documentation

Title

Designer Process
Development online help

For Designer 8.2 and later, use webMethods BPM
Process Development Help.

For Designer 8.0 and 8.1, use webMethods Designer
BPM Process Development Help.

For Designer 7.1.1 and 7.1.2, use webMethods Designer
Process Development Help.

Designer Service
Development online help

For Designer 8.2 and later, use webMethods Service
Development Help.

For Designer 7.2, 8.0, 8.0 SP1, and 8.1, use webMethods
Designer Service Development Help.

Developer user’s guide

For Developer 8.0 SP1 and 8.2, use Developing
Integration Solutions: webMethods Developer User’s
Guide.

For Developer 8.0 and earlier, use webMethods
Developer User’s Guide.

Integration Server
administration guide

For Integration Server 8.0 SP1 and later, use
Administering webMethods Integration Server.

For Integration Server 8.0 and earlier, use webMethods
Integration Server Administrator’s Guide.

Integration Server built-in
services reference guide

webMethods Integration Server Built-In Services Reference

Integration Server
clustering guide

webMethods Integration Server Clustering Guide

Integration Server publish-
subscribe developer’s
guide

Publish-Subscribe Developer’s Guide

My webMethods
administration guide

For My webMethods Server 8.0.1 and later, use
Administering My webMethods Server.

For My webMethods Server 8.0 and earlier, use My
webMethods Server Administrator’s Guide.

Optimize administration
guide

For Optimize for Infrastructure 8.0 SP1 and later, use
Administering webMethods Optimize.

For Optimize for Infrastructure 8.0 and earlier, use
webMethods Optimize Administrator’s Guide.

16

webMethods SWIFT Module Installation and User’s Guide Version 7.1

About this Guide

Documentation

Title

Optimize user’s guide

For Optimize for Infrastructure 8.0 SP1 and later, use
Optimizing BPM and System Resources with BAM:
webMethods Optimize User’s Guide.

For Optimize for Infrastructure 8.0 and earlier, use
webMethods Optimize User’s Guide.

Trading Networks
administration guide

For Trading Networks 8.0 and later, use Building B2B
Integrations: webMethods Trading Networks
Administrator’s Guide.

For Trading Networks 7.1.2, use webMethods Trading
Networks Administrator’s Guide.

Trading Networks built-in
services reference guide

For Trading Networks 8.0 and later, use webMethods
Trading Networks Built-In Services Reference.

For Trading Networks 7.1.2, use webMethods Trading
Networks Built-In Services Reference.

Trading Networks
concepts guide

For Trading Networks 8.0 and later, use
Understanding webMethods B2B: webMethods Trading
Networks Concepts Guide.

For Trading Networks 7.1.2, use webMethods Trading
Networks Concepts Guide.

Trading Networks user’s
guide

For Trading Networks 8.0 and later, use Managing
B2B Integrations: webMethods Trading Networks User’s
Guide.

For Trading Networks 7.1.2, use webMethods Trading
Networks User’s Guide.

webMethods installation
guide

For webMethods product suite 8.2 and later, use
Installing webMethods Products and Using the Software
AG Installer.

For webMethods product suite 8.0 SP1 and 8.1, use
Software AG Installation Guide.

For webMethods product suite 8.0 and earlier, use
webMethods Installation Guide.

webMethods logging
guide

For Integration Server 8.0 SP1 and later, use
webMethods Audit Logging Guide.

For Integration Server 8.0 and earlier, use webMethods
Logging Guide.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 17

About this Guide

Documentation Title
webMethods upgrade B For webMethods product suite 8.2 and later, use
guide Upgrading webMethods Products.

B For webMethods product suite 8.1 and earlier, use
webMethods Upgrade Guide.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods Integration
Server, using the convention folder.subfolder:service.

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously are
joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to

your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace font

Identifies text you must type or messages displayed by the system.

{}

Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

Separates two mutually exclusive choices in a syntax line. Type one
of these choices. Do not type the | symbol.

[]

Indicates one or more options. Type only the information inside the
square brackets. Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type
only the information. Do not type the ellipsis (...).

Documentation Installation

You can download the product documentation using the Software AG Installer.
Depending on the release of the webMethods product suite, the location of the
downloaded documentation will be as shown in the table below.

For webMethods... ~ The documentation is downloaded to...
6.x The installation directory of each product.
7.x A central directory named _documentation in the main

installation directory (webMethods by default).

18

webMethods SWIFT Module Installation and User’s Guide Version 7.1

About this Guide

For webMethods... The documentation is downloaded to...

8.x A central directory named _documentation in the main
installation directory (Software AG by default).

Online Information

You can find additional information about Software AG products at the locations listed
below.

Note: The Empower Product Support Web site and the Software AG Documentation Web
site replace Software AG ServLine24 and webMethods Advantage.

If you want to... Goto...
Access the latest version of product Software AG Documentation Web site
documentation.

http://documentation.softwareag.com

Find information about product releases and ~ Empower Product Support Web site

tools that you can use to resolve problems.
y P https://empower.softwareag.com

See the Knowledge Center to:

B Read technical articles and papers.
B Download fixes and service packs.
B Learn about critical alerts.

See the Products area to:

B Download products.

B Download certified samples.

B Get information about product
availability.

B Access older versions of product
documentation.

B Submit feature/enhancement requests.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 19

http://documentation.softwareag.com
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com

About this Guide

If you want to... Goto...

B Access additional articles, demos, and Software AG Developer Community for
tutorials. webMethods

B Obtain technical information, useful http://communities.softwareag.com/

resources, and online discussion forums,
moderated by Software AG professionals,
to help you do more with Software AG
technology.

B Use the online discussion forums to
exchange best practices and chat with
other experts.

B Expand your knowledge about product
documentation, code samples, articles,
online seminars, and tutorials.

B Link to external Web sites that discuss
open standards and many Web
technology topics.

B See how other customers are streamlining
their operations with technology from
Software AG.

20 webMethods SWIFT Module Installation and User’s Guide Version 7.1

http://communities.softwareag.com/

I Getting Started

003017 o] 23
B [nstalling webMethods SWIFT Module 51
webMethods SWIFT Module Installation and User’s Guide Version 7.1 21

| Getting Started

22

webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

What IS the SWIFT NetWork?o e
What Is webMethods SWIFT Module? e
SWIFT FIN COMpPONENt . ..ottt e e e e e e e e e
SWIFTNeEt COMPONENT . . . oo e

FpML Message Exchange SUPPOrtt

24
25
27
36
50

webMethods SWIFT Module Installation and User’s Guide Version 7.1

23

1 Concepts

What Is the SWIFT Network?

SWIFT (Society for Worldwide Interbank Financial Telecommunication) and its networks
provide a secure, global financial IP-based messaging platform that enables financial
institutions to exchange formatted financial information and transactional data. The
SWIFT networks enable you to exchange SWIFT FIN messages using the original SWIFT
Transport Network (STN) or the new SWIFT Secure IP Network (SIPN).

What Is SWIFTNet?

SWIFTNet is SWIFT's advanced IP-based messaging solution, which provides an
alternate method for transferring information to SWIFT. It consists of a portfolio of
products and services enabling the secure and reliable communication of financial
information and transactional data.

What Is SWIFTNet Link?

SWIFTNet Link (SNL) is an application programming interface that offers access to all
SWIFTNet services. Business applications can use SNL with SWIFT FIN interface
products such as SWIFT Alliance Access to connect to and use the SWIFTNet FIN
services. Applications can use SNL directly, or with an interface product such as the
SWIFT Alliance Gateway (SAG), to enable application-to-application communication
over the SWIFTNet services.

SNL functionality includes messaging, security, and service management. The security
and service management functions are beyond the scope of this guide and are not
discussed here.

SNL Messaging Services

The messaging services that SNL supports are: SWIFTNet InterAct, SWIFTNet FileAct,
SWIFTNet FIN, and SWIFTNet Browse.

SWIFTNet InterAct

SWIFTNet InterAct allows the exchange of messages between parties in synchronous
mode, using the Exchange Request function, or asynchronous mode, using the Send/Wait
Request function.

B In synchronous mode, the Exchange Request function sends data to the Responder
application. This function blocks the Requestor application until the response is
returned from the Responder and delivered to the Requestor.

The Responder SAG sends a Handle Request primitive to the Responder application,
which processes it and returns a Handle Response primitive. The Responder SAG
then sends the Exchange Response primitive back to the Requestor application.

24 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

B In asynchronous mode, the Send/Wait Requests function sends data. The Requestor
application initiates a send request to SNL. SNL accepts or rejects the request
immediately, and simultaneously unblocks the Requestor application so that it can
perform other tasks. The message is forwarded to the destination SNL and delivered
to the Responder application. The subsequent response is returned to the Requestor
SNL where the Requestor collects it through a Wait Request.

B The requests and responses for both Exchange and Send/Wait requests are coded in
XML and passed between the communicating SNL instances over SIPN.
SWIFTNet FileAct

SWIFTNet FileAct allows the automated exchange of files, supporting both synchronous
and asynchronous modes. SWIFTNet FileAct is oriented toward transferring data larger
than the SWIFTNet InterAct payload can accommodate.

B The Exchange File Request function transfers files to server applications.

B The Handle File Request function requests that the server application receive the file
transfer and send a response.

B Both requests have an optional delivery notification primitive that acknowledges that
a file has been received and transferred to a reliable storage environment.

SWIFTNet FIN

SWIFTNet FIN allows the use of the standard SNL APIs with the SWIFTNet FIN interface
to do the following;:

B Sign SWIFTNet FIN messages using SWIFTNet PKI security profiles.

B Send SWIFTNet InterAct requests that contain input messages and user
acknowledgements of previously received output messages.

B Handle SWIFTNet InterAct requests that contain output messages and SWIFTNet
FIN acknowledgements of previously sent input messages.

SWIFTNet Browse

SWIFTNet Browse enables secure communication between standard browsers and web
servers. SWIFTNet Browse supports the messaging functions of SWIFTNet InterAct and
SWIFTNet FileAct, and request/response interactions with a web server. The message
flow path in SWIFTNet Browse is identical for both SWIFTNet InterAct and SWIFTNet
FileAct messages/files.

For more information, see the documentation provided by SWIFT or go to
http://www.swift.com.

What Is webMethods SWIFT Module?

webMethods SWIFT Module provides message exchange over the SWIFTNet messaging
services and enables you to do the following:

webMethods SWIFT Module Installation and User’s Guide Version 7.1 25

http://www.swift.com

1 Concepts

Easily map data from any source format to any target format.
Manage data dictionary standards and validation.
Monitor and control message flow.

Provide exception handling.

Archive inbound and outbound messages.

SWIFT Module consists of two components to facilitate parsing, validation, and transport
of messages: SWIFT FIN and SWIFTNet.

B SWIFT FIN interacts with the SWIFT Network through the SWIFT Alliance Access
interface (SAA).

B SWIFTNet interacts with the SWIFT Network through the SWIFT Alliance Gateway
(SAG) interface.

26 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

webMethods SWIFT Module Packages

webMethods SWIFT Module uses services and other elements included in packages that
you install on Integration Server. Some of those packages contain services that are
common to both the SWIFT FIN component and the SWIFTNet component, while other
packages contain services that are specific to each component. The following table
describes the contents of each package and the functionality that it supports.

Package Description

WmEstdCommonLib Contains generic services that enable you to use various
webMethods eStandards Modules with Integration Server.

For a list of services that SWIFT Module uses from this
package, see “WmEstdCommonLib Package” on page 274.
For detailed information about those services, see webMethods
eStandards Modules Common Built-In Services Reference.

WmFIN Contains services used to implement and support the SWIFT
FIN-compliant functionality of SWIFT Module.

WmSWIFTClient Contains the elements (flow services, Java services, record
descriptions, and wrapper services) that support SWIFTNet
component client-side functionality.

WmSWIFTCommon Contains common services that are used by other SWIFT
Module packages.

WmSWIFTServer Contains the elements (flow services, Java services, record
descriptions, and wrapper services) that support SWIFTNet
component server-side functionality.

WmSWIFTSamples Contains sample services that show how to use different
features of SWIFT Module. You can also use the sample
services as examples how to create your own services.

Important! The SWIFT Module samples only demonstrate the
features of the module and must not be used in production
environment. You must delete the WmSWIFTSamples
package before you go into production.

For detailed information about the contents of each package, see Chapter 11,
“Configuring SWIFT Interfaces” and Appendix A, “Services”. For information about the
samples see webMethodsSWIFT Module Samples Guide.

SWIFT FIN Component

The SWIFT FIN component enables Integration Server to do the following:
B Receive inbound SWIFT FIN messages from the SWIFT network.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 27

1 Concepts

B Convert SWIFT FIN messages into your back-end format and process the messages
according to your settings.

B Send SWIFT FIN messages to the SWIFT network with correct header information,
according to your settings.

The SWIFT FIN component interfaces with SWIFT Alliance Access (SAA) software via
MQHA, CASmf{, or AFT. SAA, in turn, communicates with SNL, which sends and
receives messages securely via SWIFT Secure IP Network. SAA and SNL software
modules are provided by SWIFT and must be installed and configured at a customer site
by a SWIFT professional or by a trained expert.

The SWIFT FIN component provides the ability to seamlessly integrate SWIFT FIN
messages as webMethods documents into a solutions architecture and validate those
messages at the syntax and network level. Messages sent and received by SWIFT Module
are validated at the individual field level and across the fields using network validation
rules. The SWIFT FIN component also supports Market Practices among partners located
in a particular market.

What Is a SWIFT FIN Message?

SWIFT FIN messages transmit financial information from one financial institution to
another. These messages are classified into different message categories. There are 10
categories of FIN messages (Category 0 through Category 9) and each category relates to
a particular topic. For example, Category 5 contains messages related to Securities.

Each SWIFT message is represented by a three-digit number (for example, MT 541). The
MT represents SWIFT's “Message Type.” The first number (5) identifies the category to
which the message belongs; the second and third numbers (41) identify the message type.

SWIFT updates the MT specifications every year. SWIFT Module maintains these
specification changes in the swiftMT and dfdMT XML files. Based on the specified
version, SWIFT Module uses the corresponding swiftMT or dfdMT files to define the IS
document that is created.

For details about SWIFT specifications, see http://www.swift.com. For details about the
SWIFT specification versions that SWIFT Module supports, see webMethods eStandards
Modules System Requirements.

About SWIFT Message Format

All SWIFT messages must adhere to a defined format or “block structure.” There are five
possible blocks within a message, each consisting of fields that provide specific
information related to the block type. Blocks are distinguishable by brace delimiters that
start and end each individual block. Additionally, each block begins with a block
identifier (number) and a colon. The identifier indicates the block type as header, trailer,
or text.

A SWIFT message may have the following five blocks:

28 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

B 1: Basic Header Block—Mandatory. This contains basic header information. A SWIFT
message always has header Block 1. No field separators are used within this block.

B 2: Application Header Block—Contains header information about the message itself. The
content of this block depends on whether it is a GPA or a FIN message. No field
separators are used within this block.

B 3: User Header Block—Contains header information for user-to-user messages only
within the FIN application. This identifies the version of the message standard.

B 4: Text Block—Contains the text of the SWIFT message. This is the “body” of the
message that provides the message data. Each field within this block starts with a
message tag, followed by the values for that tag, for example,
22F:MICO/A2C4E6G8/A2C4, where 22F is the message tag, and the information that
follows is the value for that field. The format of this block is always the tag number,
followed by a colon, and then the field values. This block begins with a carriage
return and line feed and ends with a carriage return and line feed followed by a
hyphen.

B 5: Trailers Block—Contains the trailer information to indicate any special handling
conditions or additional information.

Sample SWIFT FIN Message, MT 541, Receive Against Payment

{1:FO1CLSAHKHHXXXX0116013185}{2:1541CLSAHKHHXXXXN}
{3:{108:MT535 004 OF 006}}
{4:

:16R:GENL

:20C: :SEME/ /01430
:23G:NEWM/CODU
:98C::PREP//19991231232359
:99B::SETT//123

:16R:LINK

:22F:: LINK/A2C4E6G8/A2C4
:13A::LINK//513

:20C: :PREV//x

:16S:LINK

:16S:GENL

:16R: TRADDET
:94B::TRAD//EXCH/30x

:97A: :CASH/ /X
:97A: :SAFE//X
:16S:0THRPRTY-}

For more detailed information about SWIFT FIN messages, see the documentation
provided by SWIFT or go to http://www.swift.com.

What Is a SWIFT MX Message?

The SWIFT FIN component also supports the SWIFT Standards MX messages. MX
messages are represented using eXtensible Markup Language (XML). With MX
messages, you can transport structured information using XML and specify the structure
of the message. At the highest level, an MX message is categorized by its business area,

webMethods SWIFT Module Installation and User’s Guide Version 7.1 29

http://www.swift.com

1 Concepts

represented by four letters. For example, in camt.029.001.01, “camt” specifies the Cash
Management business area. The three numbers that follow the letters identify the
message functionality. The next three numbers identify the Variant ID, and the last two
numbers show the version number.

An MX message contains the business area specific payload. Its structure is defined by
the corresponding XML schema. The MX message is wrapped as the RequestPayload
within the XML envelope. This request payload also contains the ApplicationHeader.
This application header contains general information, and its usage is specific to the
context of the service.

Sample SWIFT MX Message

<AppHdr xmlns="urn:swift:xsd:$ahV10">
<MsgRef>TRNREF001</MsgRef>
<CrDate>2009-05-08T22:02:36.218+02:00</CrDate></AppHdr>
<tns:Document xmlns:tns="urn:swift:xsd:setr.010.001.03">
<tns:SbcptOrdrV03><tns:Msgld>

<tns:Id>TRNREF001</tns:Id>
<tns:CreDtTm>2007-04-25T10:10:30.000+02:00</tns:CreDtTm></tns:Msgld>
<tns:MI1tpl0rdrDtls><tns:InvstmtAcctDtls>
<tns:Acctld><tns:Prtry><tns:I1d>1111
</tns:Id></tns:Prtry></tns:Acctld>

<tns:AcctDsgnt>SMART INVESTOR</tns:AcctDsgnt>
</tns:InvstmtAcctDtl1s>
<tns:IndvOrdrDtls><tns:0rdrRef>TRNREF001</tns:0rdrRef>
<tns:FinInstrmDtls><tns:Id><tns:ISIN>GB1234567890</tns:ISIN></tns:Id>
</tns:FinInstrmDtl1s>

<tns:GrssAmt Ccy="GBP">1050</tns:GrssAmt>
<tns:IncmPref>CASH</tns:IncmPref>
<tns:PhysDlvryInd>false</tns:PhysDlvrylnd>
<tns:ReqdSttImCcy>GBP</tns:ReqdSttimCcy>
<tns:ReqdNAVCcy>GBP</tns:ReqdNAVCcy>
</tns:IndvOrdrDtls></tns:M1tp10rdrDti1s>
</tns:SbcptOrdrV03></tns:Document>

For information about MX messages, see SWIFT User Handbook.

SWIFT FIN Component Parts

The following parts compose and support the SWIFT FIN component:

B The WmFIN package. This package contains services, mappings, and records for using
SWIFT Module with Integration Server. For a complete list of packages, see
“webMethods SWIFT Module Packages” on page 27.

B SWIFT Interfaces. You can connect to SWIFT using one of the following interfaces:

= MQHA (MQ Host Adapter). To communicate with SWIFT using MQHA, use the
webMethods WebSphere MQ Adapter. For more information about using the
WebSphere MQ Adapter with SWIFT Module, see “Using WebSphere MQ
Adapter to Communicate with SWIFT” on page 110.

30 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

m CASmf (Common Application Server message format). To communicate with SWIFT
using CASmf, use the CASmf services provided in the WmFIN package. For more
information about CASmf services, see “Using the CASmf Services to
Communicate with SWIFT” on page 112.

= AFT (Automated File Transfer). To communicate with SWIFT using AFT, use the File
Polling Listener and File Drop capabilities. For more information about using
AFT with SWIFT Module, see “Using AFT to Communicate with SWIFT” on
page 116.

For more information about these interfaces, see Chapter 11, “Configuring SWIFT
Interfaces”

B Integration Server. This is the underlying server of the webMethods product suite. Use
the web-based user interface, Integration Server Administrator, to manage, configure,
and administer all aspects of Integration Server, such as users, security, packages, and
services. For more information, see the Integration Server administration guide for
your release. See “About this Guide” for specific document titles..

B webMethods Trading Networks. webMethods Trading Networks enables your enterprise
to link with other financial institutions and marketplaces to form a business-to-
business trading network. For more information about using Trading Networks, see
the Trading Networks administration guide for your release. See “About this Guide”
for specific document titles.

B Software AG Designer. Software AG Designer is a design-time tool that you can use to
create processes and easy-to-understand, visually-based process models. You can also
use Designer to create, update, and execute services from the Package Navigator. For
more information about Designer, see the Designer online help for your release. See
“About this Guide” for specific document titles.

® webMethods Monitor. webMethods Monitor allows you to manage and monitor
business processes. Access Monitor functionality through the My webMethods user
interface. Monitor displays information about a business process by retrieving
information from the Process Audit Log. For more information about Monitor, see
Monitoring BPM, Services, and Documents with BAM: webMethods Monitor User’s Guide.

SWIFT FIN Component Architecture

The SWIFT FIN component uses either the publish and subscribe Process Engine
functionality of SWIFT Module, or Trading Networks processing rules to send and
receive SWIFT FIN messages. When used with Trading Networks, the SWIFT FIN
component leverages the archiving, Trading Partner Agreement (TPA), and document
type components of Trading Networks to work with your enterprise to exchange SWIFT
FIN messages.

The following figure shows the SWIFT FIN component architecture.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 31

1 Concepts

The SWIFT FIN component consists of a set of design-time and run-time component
parts, both of which are discussed in this section. For information about design-time
component parts, see ““SWIFT FIN Component Parts” on page 30. For information about
run-time component parts, see ““SWIFT FIN Component Architecture” on page 31.

When the SWIFT FIN component creates an outbound document, it formats, validates,
and publishes the SWIFT message. When the SWIFT FIN component receives an inbound
document, it parses, formats, validates, and publishes the message for a back-end
application.

To communicate with SWIFT using SAA, there are three options:

B Use webMethods WebSphere MQ Adapter to interface with MQHA.

B Use the CASmf services provided in the WmFIN package to interface with CASmf.
B Use the File Polling Listener and File Drop capabilities to interface with AFT.

32 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

The following diagram illustrates the end-to-end architecture of the SWIFT FIN
component messaging solution.

SWIFT FIN Component Features

The SWIFT FIN component runs on top of Integration Server and provides the following
functionality:

B Current messages. The component supports the following SWIFT messages:
® The latest release of SWIFT FIN messages.
m The SWIFT Standards MX messages.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 33

1 Concepts

Data field dictionary. The SWIFT FIN component provides a data field dictionary (DFD)
based on the ISO 15022 standards for SWIFT FIN messages. This DFD enables
translation of a message tag number (for example, “22F::SFRE”) into a meaningful
business name (for example, “Statement Frequency Indicator”). In addition, the
SWIFT FIN component enables you to choose how you want to display each message
in Software AG Designer:

® Tag number only (for example, “22F::SFRE")

® Equivalent message business name only (for example, “Statement Frequency
Indicator”)

= Both the tag number and the equivalent message business name (for example,
“22F::SFRE_Statement Frequency Indicator”)

® XML data tag (for example, “22FSFRE")
Message archival. All SWIFT FIN messages can be archived in Trading Networks.

SWIFT interfaces. The SWIFT FIN component provides out-of-box support to interface
to SWIFT using MQHA, CASmf, and AFT. For more information, see Chapter 11,
“Configuring SWIFT Interfaces”.

BICPIlusIBAN validation and searching. The SWIFT FIN component provides support for
deriving or validating data against the BICPlusIBAN directory. BICPlusIBAN is a
SWIFT directory that contains identifiers recognized by financial institutions, such as
Bank Identifier Codes (BICs), International Bank Account Numbers (IBANs), and
national clearing codes. The SWIFT BICPlusIBAN directory serves two main
purposes:

= To provide or validate data in international payment messages, for example to
translate the beneficiary bank's BIC into national (clearing, sort) code, or validate
the banks' details (such as name and address).

® To provide or validate data in SEPA (Single Euro Payment Area) payments, for
example, to derive the BIC from the IBAN if the IBAN is missing, or to validate
IBAN/BIC combinations.

For more information about the directories, see Chapter 4, “Importing BICPlusIBAN
and SEPA Routing Directories”.

Syntax and network validation. The SWIFT FIN component enables you to validate the
message structure, field formats, and network rules of inbound and outbound SWIFT
FIN messages. SWIFT Module provides network validation rules for a few commonly
used message types. In addition to these rules, the component enables you to create
network, Market Practice, and usage validation rules for additional messages as well.
For more information, see “Creating Validation Rules” on page 83 and “Working with
Market Practices” on page 143.

Market practices. Market Practices are specific requirements for individual markets.
Using Trading Partner Agreements (TPAs), the SWIFT FIN component supports
customization of SWIFT FIN messages based on specific trading partner pairs. For
more information about SWIFT-related Market Practices and TPAs, see “Working
with Market Practices” on page 143 and “Customizing Trading Partner Agreements”

34

webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

on page 93.

B Processing rule support. You can use custom-created Trading Networks processing
rules for each SWIFT message record. For information about creating processing
rules, see the Trading Networks administration guide for your release. See “About
this Guide” for specific document titles.

B SWIFT error codes. The component supports SWIFT error codes for field level and
network validation. It also supplies resource bundles so that all error codes can be
localized.

B Integration Server clustering. The SWIFT FIN component can be used in a clustered
Integration Server environment. For more information about clustering see

B Subfield parsing. The SWIFT FIN component automatically parses messages into blocks
and fields. You can configure further parsing into subfields with the subfieldFlag
variable, which is included in the following services:

m wm.fin.deviimportFINItems
m wm.fin.dfd:convertTagFormat
m wm.fin.dfd:convertBizNameFormat

The following figure illustrates how the SWIFT FIN component interacts with other
components. For further explanation, see the table that follows the figure.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 35

1 Concepts

Component Description
SWIFT FIN The SWIFT FIN component uses Trading Networks processing
component rules to manage the execution of SWIFT FIN messages. When

the component receives a message from a back-end system, it
invokes a Trading Networks service to recognize the message.
For information about creating processing rules, see Chapter 9,
“Configuring Processing Rules to Send and Receive SWIFT FIN
Messages”.

Trading Networks Trading Networks uses the information defined in trading
partner profiles to enable your enterprise to link to the financial
institutions with whom you want to exchange SWIFT FIN
messages. You can customize TPAs and view TN document
types when you create your message records.

For more information about Trading Networks, trading partner
profiles, TN document types, and TPAs, see the Trading
Networks administration guide for your release. See “About this
Guide” for specific document titles. You can also find
information about trading partner profiles and TN document
types in Chapter 5, “Defining Trading Networks Information”,
and information about TPAs in Chapter 8, “Customizing
Trading Partner Agreements”.

Trading Networks The Trading Networks database stores TN document types,
Database TPA, and trading partner profile information, among other
things.

Integration Server Integration Server contains the documents, services, and IS
documents that you need when creating your process models.
Integration Server also contains the elements (services, triggers,
and process fragments) that were generated by the automated
controlled steps within the process model.

SWIFTNet Component

The SWIFTNet component supports communication of SWIFT messages and files
between clients and servers:

B The client sends a request and receives a response.
B The server receives a request and sends a response.

The SWIFTNet component provides client-side and server-side support for the following
messaging services and capabilities:

B InterAct Services

B FileAct Services

36 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

Both InterAct and FileAct Services can work in either real-time mode or in store-and-
forward mode. In real-time mode, both the requestor and the responder must be online at
the same time, but in store-and-forward mode, they do not both need to be online.

The client uses the SNL function SwCall() to access the server application through
SWIFTNet. The server uses the SNL function SwCallback() to respond to clients through
SWIFTNet.

As mentioned earlier, InterAct and FileAct Services are implemented as a set of SNL
primitives that are exchanged between the client or server application program and the
SNL software on your SAG. Along with its packages, the SWIFTNet component provides
two DLLs, WmSWIFTNetClient.dll and WmSWIFTNetServer.dl], that invoke the
functionality of the SNL libraries to transfer the SNL primitives between the client and
server.

Client Functionality

The WmSWIFTNetClient libraries (that is, WmSWIFTNetClient.dll or
WmSWIFTNetClient.so) invokes functionality for a client, which sends a request to and
receives a response from a server in real-time or store-and-forward mode. When using
SWIFT Module with a client, you can do the following:

B Send an InterAct request message and receive a response in real-time or store-and-
forward mode.

Put a file using FileAct service in real-time or store-and-forward mode.
Get a file using FileAct service in real-time mode only.

Pull messages from a queue in store-and-forward mode only.

Fetch a file from the SnF queue in store-and-forward mode only.

Server Functionality

The WmSWIFTNetServer libraries (that is, WmSWIFTNetServer.dll or
WmSWIFTNetServer.so) invokes functionality for a server, which receives a request from
and sends a response to a client. When using SWIFT Module with a server, you can do
the following;:

B Receive an InterAct request message and send a response in real-time or store-and-
forward mode.

B Accepta put file request from the client application in real-time mode only.
B Accept a get file request from the client application in real-time mode only.
B Receive the pushed messages from the SnF queue in store-and-forward mode only.

For more information about the architecture of the module, see “SWIFTNet Component
Architecture” on page 38.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 37

1 Concepts

SNL Request and Response Primitives Support

The SWIFTNet component supports all of the SNL request and response primitives
involved in communication between the client, the server, and SWIFTNet. For a complete
list of the supported primitives, see “Services and the SNL Request and Response
Primitives” on page 293.

SWIFTNet Component Architecture

The following diagram illustrates the architecture of systems and processes that enable
the SWIFTNet component to exchange messages and files. See the table below the
diagram for additional information.

The following table describes the elements of the SWIFTNet component architecture:

Component Description
IBM Web IBM WebSphere MQ uses the store-and-forward model to enable
SphereMQ programs to communicate by passing messages to one another

via a message queue. This enables asynchronous data exchange.

Integration Server Integration Server hosts the SWIFTNet component, Trading
Networks, and WebSphere MQ Adapter services and related
files. Use Integration Server Administrator to manage, configure,
and administer all aspects of Integration Server, such as users,
security, packages, and services.

For more information about Integration Server, see the
Integration Server administration guide for your release. See
“About this Guide” for specific document titles.

38 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

Component

Description

MQHA

The MQ Host Adapter (MQHA) enables your SWIFTNet
component client and server applications to communicate with
SWIFT Alliance Gateway through IBM WebSphere MQ. MQHA
is the default transport.

To obtain MQHA, contact SWIFT.

webMethods
Trading Networks

Trading Networks enables your enterprise to link with other
financial institutions and marketplaces to form a business-to-
business trading network. Trading Networks also enables the
SWIFTNet component to exchange messages and files with your
SWIFT Alliance Gateway.

For more information about Trading Networks, see the Trading
Networks administration guide for your release. See “About this
Guide” for specific document titles.

RA

The Remote API (RA) client enables the SWIFTNet component to
communicate with your SWIFT Alliance Gateway and SNL
through your Remote API Host Adapter (RAHA). You must
install an RA client on the same machine as Integration Server.

To obtain an RA client, contact SWIFT.

RAHA

Your RAHA enables your SWIFT Alliance Gateway (SAG) to
exchange messages and files with the RA client on your
Integration Server. You must install RAHA on the same machine
as SAG. RAHA supports single-threaded processing of messages.

To obtain RAHA, contact SWIFT.

SAG

The SWIFT Alliance Gateway (SAG) on which you install your
SNL software must be configured to exchange messages and files
with SWIFTNet. You also will use this configuration information
to configure SWIFT Module and your RA client.

webMethods
WebSphere MQ
Adapter

The WebSphere MQ Adapter enables Integration Server to
exchange information with SWIFT Alliance Gateway through an
IBM WebSphere MQ message queue. This capability lets you
route documents or any piece of information from Integration
Server to systems that use WebSphere MQ message queuing as
their information interface.

SWIFTNet Component Real-Time Mode

Real-time InterAct message services are typically used when the receiver and the sender
are both online at the time of message or file transmission. When real-time mode is used,
the responder’s server application generates the response and interprets the message

sent.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 39

1 Concepts

Real-Time InterAct

InterAct Services ensure secure communication of request/response business messages
between application-level clients and servers on SWIFTNet. It is cost-effective and ideal
for online queries or reporting systems.

The sequence of the InterAct request/response session is as follows:

1
2

The requestor's client sends a request.

The client request is passed to SWIFTNet network, which processes the request and
sends it to the responder's server.

The responder’s server receives the request and sends the response.

SWIFTNet processes the response received from the responder's server and sends it
to the requestor’s client application.

The requestor's client receives the response.

Real-Time FileAct

Real-time FileAct Services offer a secure transfer of financial files between organizations
on SWIFTNet. XML based FileAct primitives are used to transfer the files and maintain
the status of the file transfers. FileAct Services provide the following functionality:

Put File. Send a file to another SWIFTNet user.
Get File. Receive a file from another SWIFTNet user.

Subscribe to Transfer Events. Receive progressive transfer status on an event-by-event
basis.

Receive Transfer Events. Respond to the terms of a subscription that is set up by the
Subscribe Event primitive at the sending or receiving side of a transfer.

The following diagram illustrates the real-time InterAct/FileAct service. See the table
below the diagram for additional information.

40

webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

Step Description

1 The requestor's client sends the Sw: InitRequest primitive to initialize the
SNL client process.

2 The requestor's client makes a SwCall() with SwSec:CreateContextRequest as
primitive to initialize the security context.

3 The client makes a request using the appropriate primitive for the service
type:

B For an InterAct service, the client uses Swint:ExchangeRequest.

B For a FileAct service, the client uses Sw:ExchangeFileRequest.

4 The requestor's client side SNL passes the InterAct or FileAct request to the
responder's server side SNL via SWIFTNet.
5 The responder's server side SNL extracts the request from SWIFTNet and

invokes the server through SwCallback()SwInt:HandTeRequest/
Sw:HandleFileRequest. The responder's server returns a response to the
client.

6 The client destroys the created security context.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 41

1 Concepts

Step Description

7 The client triggers the termination with the SNL.

SWIFTNet Component Store-and-Forward Mode

In store-and-forward (SnF) mode, messages and files are stored within SWIFTNet in a
queue, and delivered to the receiver at a future time. Therefore, the requestor and
responder do not need to be online at the same time. The requestor receives a notification
if a message cannot be delivered.

SnF queues contain the requestor's undelivered messages and the files and delivery
notifications generated by SWIFTNet SnF. Messages and files in SnF mode can be routed
into queues with the same flexibility available for message routing in real-time mode.

The Message Reception Registry function (MRR) specifies the message routing details.
The responder defines and configures the available queues. Then the requestor specifies
which of these queues to use for the messages or files that the responder sends. (This
information is not visible to the responder.)

In store-and-forward mode, the response comes from the SWIFTNet SnF queue and does
not contain any feedback from the responder. (When real-time mode is used, the
responder's server sends the response and interprets the message sent.)

Only the messages or files that are flagged for store-and-forward delivery mode are
added to the queue. Flagging can be done within the RequestControl for store-and-
forward delivery mode for SWIFTNet InterAct and for SWIFTNet FileAct.

42 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

Step Description

Requestor's client sends messages or files to the SnF queue. The SnF queue
stores the messages or files received and sends a response to the requestor.

Responder's client acquires the SnF queue in pull mode and pulls the
messages from the SnF queue.

Responder's client acquires the SnF queue in push mode. The responder's
server receives the pushed messages from the SnF queue and sends an
acknowledgement.

N O = WIN =

The following diagram illustrates the store-and-forward flow on the requestor's side for
an InterAct send or FileAct put session.

Store and Forward InterAct

Store-and-forward InterAct services are used for exchanging messages when the sender
and receiver are not online simultaneously. To use this feature, the sender must specify
that SnF be used to store the message and indicate the queue in which SWIFTNet SnF
should store any delivery notifications that it generates. If the file delivery fails, the failed
delivery notification, including the reason the delivery failed, is stored in the queue the
sender specified in the RequestControl.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 43

1 Concepts

Client processes on the requestor's side initiate requests and related functions, and then
pass a SWIFTNet primitive parameter to SNL representing the function to be performed.

<?xml version="1.0"7>
<Swlnt:ExchangeRequest>
<SwSec:AuthorisationContext>
<SwSec:UserDN>cn=abc,o0=xxxx,0=swift</SwSec:UserDN>
</SwSec:AuthorisationContext>
<Swlnt:Request>
<SwInt:RequestControl>
<Swlnt:RequestCrypto>TRUE</SwInt:RequestCrypto>
<SwInt:DeliveryCtri>
<Swlnt:DeliveryMode>SnF</Swint:DeliveryMode>
<SwInt:NotifQueue>xxxx_generic!x</Swlnt:NotifQueue>
<Sw:DeliveryNotif>TRUE</Sw:DeliveryNotif>
</Swint:DeliveryCtrl>
</Swint:RequestControl>
<Swlnt:RequestHeader>
<Swlnt:Requestor>o=xxxx, o=swift</Swint:Requestor>
<Swlnt:Responder>o=xxxx, o=swift</Swint:Responder>
<Swlnt:Service>swift.generic.iast!x</Swint:Service>
</Swlnt:RequestHeader>
<Swlnt:RequestPayload>This is for SnF Queue</SwInt:RequestPayload>
<SwSec:Crypto>
<SwSec:CryptoControl>
<SwSec:MemberRef>RequestPayload</SwSec:MemberRef>
<SwSec:SignDN>cn=abc,o0=xxxx,0=swift</SwSec:SignDN>
</SwSec:CryptoControl>
</SwSec:Crypto>
</Swint:Request>
</Swint:ExchangeRequest>

If the instruction to trigger store-and-forward mode is not provided in the
Swint:DeliveryCtrl element for an SnF service request, then SWIFTNet will reject the
message. The SwSec:UserDN within the SwSec:AuthorisationContext must have the RBAC
role "SnFRequestor" with the queue, as specified in the Swint:NotifQueue as qualifier.

The queue in SwInt:NotifQueue stores failed delivery notifications. It must belong to the
same institution specified in the SwInt:Requestor. When the message is stored,
SWIFTNet indicates this in the response.

Store and Forward FileAct

Store-and-forward FileAct Services can only be used to send a file to a receiver. They
cannot be used to request a file.

A store-and-forward FileAct request resembles a real-time FileAct request message. The
sender must indicate that SnF be used to store the file and indicate the queue in which
SWIFTNet SnF should store any delivery notifications that it generates. If the file delivery
tails, the failed delivery notification, including the reason the delivery failed, is stored in
the queue the sender specified in the RequestControl.

<Sw:ExchangeFileRequest>
<SwSec:AuthorisationC ontext>
<SwSec:UserDN>cn=abc,o0=xxxx,0=swift</SwSec:UserDN>
</SwSec:AuthorisationContext>

44 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

<Sw:FileRequest>
<Sw:FileRequestControl>
<Swlnt:RequestCrypto>FALSE</SwInt:RequestCrypto>
<SwInt:DeliveryCtri>
<Swlnt:DeliveryMode>SnF</Swint:DeliveryMode>
<SwInt:NotifQueue>xxxx_generic!x</SwInt:NotifQueue>
</Swlnt:DeliveryCtri>
</Sw:FileRequestControl>
<Sw:FileRequestHeader>
<Swlnt:Requestor>o=xxxx, o=swift</Swint:Requestor>
<Swlnt:Responder>o=xxxx, o=swift</Swint:Responder>
<Swlnt:Service>swift.generic.fast!x</Swint:Service>
</Sw:FileRequestHeader>
<Sw:FiTeOpRequest>
<Sw:PutFileRequest>
<Sw:TransferDescription>atlog.txt</Sw:TransferDescription>
<Sw:PhysicalName>C:\atlog.txt</Sw:PhysicalName> </Sw:PutFileRequest>
</Sw:FileOpRequest>
</Sw:FileRequest>
</Sw:ExchangeFileRequest>

Retrieving Messages and Files from a Queue

Messages and files can be retrieved from a queue using pull or push modes.

Pull Mode

When the pull mode is used, the client process initiates the delivery of a message. It
performs an SwCall() with Sw:Pul1SnFRequest as the input primitive. The
Sw:PullSnFResponse contains the message pulled from the queue.

The following diagram illustrates the store-and-forward InterAct pull session. See the
table below the diagram for additional information.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

45

1 Concepts

Step Description

1 The client sends the Sw:InitRequest to start delivering messages and files in
a SnF queue. Next, the client uses SwSec:CreateContextRequest to open the
desired security context.

2 The client sends a request to acquire the queue. After receiving the response,
the client starts delivering messages by issuing the Sw:Pul1SnFRequest.

3 The first Sw:Pul1SnFRequest does not carry an acknowledgement, but all
subsequent requests must acknowledge the message delivered in the
previous pull request to avoid the same message being delivered again.

4 Messages are removed from the queue.

5 When the client is finished delivering messages, the client sends
Sw:AckSnFRequest (Sw:ExchangeSnFRequest) along with the
acknowledgement of the last delivered message as input primitive.

6 The client destroys the created security context and triggers the termination

with the SNL.

46

webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

Push Mode

When push mode is used, the initiative to deliver a message resides with SWIFTNet SnF.
The message is pushed from SWIFTNet SnF and is received by the server on SWIFTNet
Link. In this server, a regular SwCallback() is invoked. The input primitive is the message
from the queue within a Swint:HandleRequest or Sw:HandleFileRequest. The server
application ensures that the message is stored safely, and then responds with an
acknowledgement to SWIFTNet SnF indicating how the message was received.

The following diagram illustrates the store-and-forward InterAct Push session. See the
table below the diagram for additional information.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 47

1 Concepts

Step Description

1 The server process opens the required security context with
Sw:HandlelInitRequest and SwSec:CreateContextRequest. The server
prepares to process the incoming requests.

2 The client process starts, sends the Sw: InitRequest, opens the desired
security context, acquires the queue in pull mode, and starts delivering
messages.

The server receives a Swint:HandleRequest request.

Messages are removed from the queue.

3
4 The server sends an acknowledgement in SwInt:HandleResponse.
5
6

The client releases the queue.

Fetching a File from a Queue

If a FileAct message is received in either pull mode or push mode, a client process must
fetch a file. When the file is available to be fetched, the SWIFTNet SnF does the following:

B In push mode, delivers a Sw:NotifyFileRequestHandle within Sw:HandleFileRequest.
B In pull mode, delievers a and within Sw:Pul1SnFResponse in pull mode.

The Sw:FetchFileRequest copies the structure received in the Sw:FileRequestHandle. The
response is the TransferRef thatis used to identify the file transfer from SWIFTNet SnF to
the receiver. For a pull session, no other message will be delivered for that queue until the
file has been fetched and a delivery acknowledgement has been sent.

Important! When a file is fetched from the queue, the file will remain within SWIFTNet SnF
until an explicit acknowledgement has been sent by a client process.

Server Application Processing of SNL Primitives

The following diagram illustrates how the server application processes the SNL
primitives when a client application sends a request. See the table below the diagram for
additional information.

48 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 Concepts

Step Description
1 The requestor's client sends a request to the server via SWIFTNet.
2 The responder's SAG receives the SNL primitive request and invokes the

wm.swiftnet.server.services:handleRequest service in Integration Server on which
the server application is installed.

3 The handleRequest service of the server application then invokes the
wm.tn:receive service of Trading Networks.

4 Trading Networks uses TN document types to recognize the incoming
request, saves the request to the Trading Networks database, and invokes
one of the processing rules associated with the request's TN document type.

5 The processing rule processes the document as necessary and generates the
XML response.

The XML response is sent to SAG.

7 SAG returns the response to the requestor's client application via SWIFTNet.

SWIFT File Transfer Adapter Support

The SWIFTNet component of SWIFT Module provides integration support for the File
Transfer Adapter (FTA) provided by SWIFT. You can use FTA to automate file transfer
between parties over SWIFTNet.

SWIFT Module makes the file available on the SWIFT Alliance Gateway (SAG) host. Then
the File Transfer interface (FT-interface) provided by SWIFT automatically transfers the
file over SWIFTNet using FTA configuration data.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 49

1 Concepts

With SWIFT Module, you can also create a companion file with custom parameters to
override the FTA configuration data, for example local authentication information,
override values, and header information. You can also monitor the SAG input directory
for reports that FTA generates about the processing status of data files. For information
about how to transfer files using FTA, see Chapter 17, “Using FTA to Transfer Files over
SWIFTNet”.

FpML Message Exchange Support

SWIFT Module provides support for FpML message exchange over SWIFTNet. FpML
messages are XML messages for the transfer of Over The Counter (OTC) derivatives over
SWIFTNet. FpML-compliant messages in XML format are transferred over SWIFTNet
using the SWIFTNet InterAct store-and-forward messaging service.

Important! Before you can exchange FpML messages over SWIFTNet, you must register
with SWIFT.

SWIFT Module provides the following support for the transfer of FpML messages:

B Store-and-Forward mode of message exchange over SAA in XML v2 format or
directly over SAG.

Reconciliation of delivery notifications with the original messages.

B Populating the XML v2 header when sending FpML messages to SAA or SAG. You
can set similar flags in an XML v2 message when sending a message to the
counterparty.

B Message validation.
B Built-in support for schema validation.
B Semantic validation of all XML messages.

The non-repudiation of emission and reception of transferred messages is also required
for the exchange of FpML messages over SWIFTNet, but this requirement is handled by
SAA or SAG. SWIFT Module does not provide any support for signature generation.

For more information about FpML message exchange over SWIFTNet, see the SWIFT
documentation.

FpML messages are based on FpML schemas provided by SWIFT that you can import
using the Integration Server functionality for creating a schema. You can create the
corresponding document types for the FpML schemas using the Integration Server
functionality for creating IS document types. For more information about creating IS
schemas and IS document types, see the Designer online help for your release and “Step
3: Create IS Schema and IS Document Type” on page 137. See “About this Guide” for
specific document titles.

50 webMethods SWIFT Module Installation and User’s Guide Version 7.1

2 Installing webMethods SWIFT Module

<
REGUITEMNES . v vttt ettt e e
Installing webMethods SWIFT Module 7.0 SPL i
Installing the SWIFT Module Samples Packageccooiiiiiin..
Upgrading to SWIFT Module 7.0 SPL
Uninstalling SWIFT Module 7.1 SPL e

52
52
52
54
54
60

webMethods SWIFT Module Installation and User’s Guide Version 7.1

51

2 Installing webMethods SWIFT Module

Overview

This chapter, along with thewebMethods installation guide for your release, explains
how to install, upgrade, and uninstall webMethods SWIFT Module 7.1 SP1. See “About
this Guide” for specific document titles.

Important! For the webMethods 8 release, the installer you use to install the module is
named Software AG Installer 8. Previously, the installer was named webMethods
Installer 7. If you are installing the module with webMethods 8 products, you must use
Software AG Installer 8 and the webMethods installation guide for the 8.x release. If you
are installing the module with webMethods 7.x, you can use Software AG Installer 8 with
the webMethods installation guide for the 8.x release or webMethods Installer 7 with
webMethods Installation Guide 7.x. See “About this Guide” for specific document titles.

Requirements

For a list of the operating systems and webMethods products supported by SWIFT
Module 7.1 SP1, see webMethods eStandards Modules System Requirements. SWIFT Module
7.1 SP1 has no hardware requirements beyond those of its host Integration Server.

Depending on the type of transport you use, you will need either the MQ Host Adapter
(MQHA) or the Remote API Host Adapter (RAHA). If you are using the SWIFTNet
component of SWIFT Module for a server application, you must install RAHA or MQHA
on the same machine as SWIFT Alliance Gateway.

Regardless of whether you are using the SWIFTNet component for a client or server
application, you must install a Remote Access (RA) client on your Integration Server. The
RA client, RAHA, and MQHA are provided by SWIFT. For more information, see your
SWIFT documentation or go to http://www.swift.com.

If you are using CASmf as the interface to SWIFT, you must install a CASmf client
(provided by SWIFT) on the same machine as your Integration Server. For more
information, see your SWIFT documentation or go to http://www.swift.com.

SWIFT Module references SWIFT Alliance Access and SWIFT Alliance Gateway through
the interfaces provided by SWIFT. SWIFT Alliance Access and SWIFT Alliance Gateway
use SWIFTNet Link to communicate with SWIFT.

Installing webMethods SWIFT Module 7.1 SP1

The instructions in this section are meant to be used with the more complete instructions
in the webMethods installation guide for your release. The instructions explain how to
use the Software AG Installer wizard.

52 webMethods SWIFT Module Installation and User’s Guide Version 7.1

http://www.swift.com
http://www.swift.com

2 Installing webMethods SWIFT Module

Note: If you are installing SWIFT Module in a clustered environment, you must install it
on each Integration Server in the cluster, and each installation must be identical. For more
information about working with SWIFT Module in a clustered environment, see
Appendix C, “Administering webMethods SWIFT Module in a Cluster”.

To install SWIFT Module 7.1 SP1

1 Download the Software AG Installer from the Empower Product Support Web site at
https://empower.softwareag.com.

2 If you are installing SWIFT Module on an existing Integration Server, shut down the
Integration Server.

3 Start the Software AG Installer wizard.

® Choose the webMethods release that includes the Integration Server on which to
install the module. For example, if you want to install the module on Integration
Server 7.1, choose the 7.1 release.

® If you are installing on an existing Integration Server, specify the webMethods
installation directory that contains the host Integration Server. If you are installing
both the host Integration Server and the module, specify the installation directory
to use. The installer will install the module in the
Integration Server_directory\ packages directory.

® In the product selection list, navigate to eStandards > webMethods SWIFT Module7.1
SP1. You can also choose to install any required products indicated in the
webMethods eStandards Modules System Requirements.

The installer installs the following components:
= webMethods Integration Server

= webMethods Trading Networks

m eStandards Common Library

SWIFT Module installs the following packages in the Integration Server_directory\
packages directory:

= WmFIN

. WmSWIFTCommon

m WmSWIFTNetClient
. WmSWIFTNetServer

Note: If Integration Server and Trading Networks are already installed from a
previous installation, the installer does not reinstall these products.

4 After the installer completes the installation, close it.

5 Start the host Integration Server.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 53

https://empower.softwareag.com

2 Installing webMethods SWIFT Module

6 If you are using Integration Server with webMethods Broker, enable publication of
messages to webMethods Broker as follows:

a Navigate to the Integration Server_directory\ packages\ WmFIN \ config directory.

b Open the fintransport.cnf file in a text editor and change the
fin.message.publishLocal parameter to false.

¢ Save and close the file.

Installing the SWIFT Module Samples Package

The SWIFT Module samples package (WmSWIFTSamples) contains the sample services
to run SWIFT Module. The samples package is not installed with SWIFT Module 7.1 SP1.
To download the WmSWIFTSamples package and webMethods SWIFT Module Samples
Guide, go to the Developer Community for webMethods at
http://communities.softwareag.com/ecosystem/communities/public/Developer/webmeth
ods/products/esb/ and see the Code Samples.

Upgrading to SWIFT Module 7.1 SP1

This section describes how to upgrade and migrate the services created in:

B webMethods SWIFT Module 7.1 to SWIFT Module 7.1 SP1

B webMethods SWIFT FIN Module 6.1 Service Pack 4 to SWIFT Module 7.1 SP1
B webMethods SWIFTNet Module 6.0.1 Service Pack 1 to SWIFT Module 7.1 SP1

Before You Begin

Before you upgrade to SWIFT Module 7.1 SP1, you must migrate to Integration Server,
Trading Networks, Designer, and Monitor version 7.1.2 or later from the equivalent 6.1.x
or 6.5.x versions of those products. For instructions, see the webMethods upgrade guide
for your release. See “About this Guide” for specific document titles.

When you are upgrading to a newer version of Trading Networks make sure that you
back up the SWIFT Module packages that contain Trading Networks specific data. For
more information on how to upgrade Trading Networks, see the webMethods upgrade
guide for your release. See “About this Guide” for specific document titles.

Note: The 6.5.x equivalent for Designer was Modeler.

54 webMethods SWIFT Module Installation and User’s Guide Version 7.1

http://communities.softwareag.com/ecosystem/communities/public/Developer/webmethods/products/esb/
http://communities.softwareag.com/ecosystem/communities/public/Developer/webmethods/products/esb/

2 Installing webMethods SWIFT Module

Upgrading from SWIFT Module 7.1

To upgrade from SWIFT Module 7.1 with latest fixes

1

Back up your existing SWIFT Module 7.1 (with latest fixes applied) installation and
all custom packages that are used by SWIFT Module.

Export all SWIFT Module 7.1 Trading Networks information (profiles, TN document
types, processing rules, TPAs and TN attributes) from Trading Networks using My
webMethods Server.

For information about exporting Trading Networks assets, see the Trading Networks
administration guide for your release. See “About this Guide” for specific document
titles.

Shut down Integration Server if it is running.

Uninstall SWIFT Module 7.1. For instructions, see webMethods SWIFT Module 7.1
Installation and User's Guide.

Note: You must remove SWIFT Module related packages manually. To do so, navigate
to the Integration Server_directory\ packages directory and delete the WmFIN and
WmSWIFT-related folders.

Install SWIFT Module 7.1 SP1 on a supported version of Integration Server. For
instructions, see “Installing webMethods SWIFT Module 7.1 SP1” on page 52. For a
list of supported Integration Server versions, see webMethods eStandards Modules
System Requirements.

If you want to preserve the previous configuration values, replace the following files:

= \WmFIN\config\ properties.cnf with the backup of
\WmFIN\ config\ properties.cnf from the SWIFT Module 7.1 installation.

® \WmFIN\ config\ wmcasmf.cnf with the backup of
\WmCASmf\ config\ wmcasmf.cnf from the SWIFT Module 7.1 installation.

= \WmFIN\ config\ fintransport.cnf with the backup of
\ WmFINTransport\ config\ fintransport.cnf from the SWIFT Module 7.1
installation.

If you want to use any of the SWIFT Module 7.1 configuration values for the RAHA
transport, you must configure the SWIFTNet server application and client
applications.

a InIntegration Server Administrator, select Adapters > SWIFT.

b Configure the SWIFTNet server with the following information from the SWIFT
Module 7.1 installation:

webMethods SWIFT Module Installation and User’s Guide Version 7.1 55

2 Installing webMethods SWIFT Module

5

From the SWIFT navigation area, select SWIFTNet Server Config > Edit.

In the SWIFTNet Remote Process Connection Configuration section, enter the
values from the backup of the \WmSWIFTNetServer \ config \ connect.cnf file.
This file stores the password handle for the user password that you need to
connect to Integration Server.

In the SWIFTNet Server Environment Information section, enter the values
from the backup of the \ WmSWIFTNetServer\ config\ env.cnf file.

In the SWIFTNet Server SAG Connection Properties section, enter the values
from the backup of the \ WmSWIFTNetServer \ config \ snl.cnf file.

Click Save when you are done.

Configure the SWIFTNet client, providing the following information from the
SWIFT Module 7.1 installation, as follows:

1
2

4

From the SWIFT navigation area, select SWIFTNet Client Config > Edit.

In the SWIFTNet Client Environment Information section, enter the values
from the backup of the \WmSWIFTNetClient\ config\ env.cnf file.

In the SWIFTNet Client SAG Connection Configuration section, enter the
values from the backup of the \WmSWIFTNetClient\ config\ snl.cnf file.

Click Save when you are done.

For information about the fields in the SWIFTNet Server and Client Configuration
screen, and how to configure the SWIFTNet server application and client
application over RAHA, see Chapter 15, “Configuration Steps for InterAct and
FileAct Messaging Services over SAG RAHA” on page 149.

8 Start Integration Server, the Integration Server Administrator, and My webMethods

10

Server.

Import the custom SWIFT Module 7.1 Trading Networks information that you
exported in step 2 into Trading Networks. For instructions about how to import
Trading Networks information, see the Trading Networks administration guide for
your release. See “About this Guide” for specific document titles.

In Designer > Package Navigator, run the wm.fin.dev:importFINItems service to re-import all
message types that you have been using with SWIFT Module 7.1.

Important! Before re-importing the message types, you must delete any existing IS
document types in the wm.fin.doc.version.category folders in Designer to avoid
problems that may arise from having older versions of the IS document types.

56

webMethods SWIFT Module Installation and User’s Guide Version 7.1

2 Installing webMethods SWIFT Module

Upgrading from SWIFT FIN Module 6.1 Service Pack 4

To upgrade from SWIFT FIN Module 6.1 Service Pack 4

1

Back up your existing SWIFT FIN Module 6.1 Service Pack 4 installation and all
custom packages that are used by SWIFT FIN Module.

Export all SWIFT FIN Module 6.1 Service Pack 4 Trading Networks information
(partner profiles, processing rules, TPAs, and TN document types) from Trading
Networks using the Trading Networks Console export function. (For information
about exporting Trading Networks assets, see the Trading Networks administration
guide for your release. See “About this Guide” for specific document titles.)

Shut down Integration Server if it is running.

Uninstall SWIFT FIN Module 6.1 Service Pack 4. For instructions, see webMethods
SWIFT FIN Module Installation and User’s Guide.

Note: You must remove SWIFT FIN Module related packages manually. To do so,
navigate to the Integration Server_directory\ packages directory and delete the
WmPFIN-related folders.

Install SWIFT Module 7.1 SP1 on a supported version of Integration Server. For
instructions, see “Installing webMethods SWIFT Module 7.1 SP1” on page 52. For a
list of supported Integration Server versions, see webMethods eStandards Modules
System Requirements.

If you want to preserve the previous configuration values, replace the following files:

= \WmFIN\ config\ properties.cnf with the backup of
\WmFIN\ config\ properties.cnf from the SWIFT FIN Module 6.1 Service Pack 4
installation.

= \WmFIN\ config\ wmcasmf.cnf with the backup of
\WmCASmf\ config\ wmcasmf.cnf from the SWIFT FIN Module 6.1 Service Pack
4 installation.

= \WmFIN\ config\ fintransport.cnf with the backup of
\ WmFINTransport\ config\ fintransport.cnf from the SWIFT FIN Module 6.1
Service Pack 4 installation.

Start Integration Server.

Import the custom SWIFT FIN Module Trading Networks information that you
exported in step 2 into Trading Networks. For instructions for how to import Trading
Networks information, see the Trading Networks administration guide for your
release. See “About this Guide” for specific document titles.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 57

2 Installing webMethods SWIFT Module

9

10

In Designer > Package Navigator, run the wm.fin.dev:importFINItems service to re-import all
message types that you have been using with SWIFT FIN Module 6.1 Service Pack 4.

Important! Before re-importing the message types, you must delete any existing IS
document types in the wm.fin.doc.version.category folders in Designer to avoid
problems that may arise from having older versions of the IS document types.

With SWIFT Module 7.1 SP1, all services from the WmIPCore package of SWIFT FIN
Module 6.1 have been moved to the WmEstdsCommonLib package. The WmIPCore
package no longer exists. To migrate your references to services in the WmIPCore
package to the corresponding services in the WmEstdsCommonLib package, do the
following:

In Designer > Package Navigator, run the “com.wm.common.Util:migrateServices” on
page 272 service included in SWIFT Module 7.1 SP1, WmSWIFTCommon package.
For details about the migration service, see Appendix A, “Services”.

Note: If you are using mappings for MT document types from the setup of SWIFT FIN
Module 6.1 Service Pack 4 with earlier fixes, the MT message structure may be
different than the MT message structure required for SWIFT Module 7.1 SP1.

Upgrading from SWIFTNet Module 6.0.1 Service Pack 1

To upgrade from SWIFTNet Module 6.0.1 Service Pack 1

1

Back up your existing webMethods SWIFTNet Module 6.0.1 Service Pack 1
installation and all custom packages that are used by SWIFTNet Module.

Export all SWIFTNet Module 6.0.1 Service Pack 1 Trading Networks information
(profiles, TN document types, processing rules, and TN attributes) from Trading
Networks using the Trading Networks Console export function.

For information about exporting Trading Networks assets, see the Trading Networks
administration guide for your release. See “About this Guide” for specific document
titles.

Shut down Integration Server if it's running.

Uninstall SWIFTNet Module 6.0.1 Service Pack 1. For instructions, see webMethods
SWIFTNet Module Installation and User's Guide.

Note: You must remove the SWIFTNet Client related packages manually. To do so,
navigate to the Integration Server_directory\ packages directory and delete the
WmSWIFTNetClient-related folders.

58

webMethods SWIFT Module Installation and User’s Guide Version 7.1

2 Installing webMethods SWIFT Module

5

8

Install SWIFT Module 7.1 SP1 on a supported version of Integration Server. For
instructions, see “Installing webMethods SWIFT Module 7.1 SP1” on page 52. For a
list of supported Integration Server versions, see webMethods eStandards Modules
System Requirements.

Start Integration Server, Integration Server Administrator, and My webMethods
Server.

If you want to use any of the SWIFTNet Module 6.0.1 Service Pack 1 configuration
values for the RAHA transport, configure the SWIFTNet server application and client
application as follows:

a InIntegration Server Administrator, select Adapters > SWIFT.
b Configure the SWIFTNet server, as follows:

1 From the SWIFT navigation area, select SWIFTNet Server Config > Edit. Provide
the following information from the SWIFTNet Module 6.0.1 Service Pack 1
installation:

2 Inthe SWIFTNet Remote Process Connection Configuration section, enter the
values from the backup of the \ WmSWIFTNetServer \ config \ connect.cnf file.
This file stores the password handle for the user password that you need to
connect to Integration Server.

3 In the SWIFTNet Server Environment Information section, enter the values
from the backup of the \ WmSWIFTNetServer \ config\ env.cnf file.

4 In the SWIFTNet Server SAG Connection Properties section, enter the values
from the backup of the \WmSWIFTNetServer\ config\ snl.cnf file.

5 Click Save when you are done.
¢ Configure the SWIFTNet client as follows:

1 From the SWIFT navigation area, select SWIFTNet Client Config > Edit. Provide
the following information from the SWIFTNet Module 6.0.1 Service Pack 1
installation:

2 In the SWIFTNet Client Environment Information section, enter the values
from the backup of the \ WmSWIFTNetClient\ config\ env.cnf file.

3 In the SWIFTNet Client SAG Connection Configuration section, enter the
values from the backup of the \ WmSWIFTNetClient\ config\ snl.cnf file.

4 Click Save when you are done.

For information about the fields in the SWIFTNet Server and Client Configuration
screen, and how to configure the SWIFTNet server application and client
application over RAHA, see Chapter 15, “Configuration Steps for InterAct and
FileAct Messaging Services over SAG RAHA” on page 149.

Import the SWIFTNet Trading Networks information that you exported in step 2 into
Trading Networks. For instructions how to import Trading Networks information,
see the Trading Networks administration guide for your release. See “About this
Guide” for specific document titles.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 59

2 Installing webMethods SWIFT Module

Uninstalling SWIFT Module 7.1 SP1

The instructions in this section are meant to be used with the uninstallation instructions
in the webMethods installation guide for your release. See “About this Guide” for specific
document titles.

Important! Before you uninstall SWIFT Module, stop all RMI Registry services that are
running.

To uninstall SWIFT Module 7.1 SP1

1 Uninstalling SWIFT Module 7.1 SP1 removes all components in the SWIFT Module
packages. If you want to keep certain records or services from the existing SWIFT
Module packages on your Integration Server, export them to a new package.

To do so, open Designer, select the package or the service you want to export, and
select File > Export.

= If you select a package, the entire package is exported.
= If you select a service, only the selected service is exported.
2 Shut down the Integration Server that hosts SWIFT Module 7.1 SP1.

3 Start the Software AG Uninstaller, selecting the webMethods installation directory
that contains the host Integration Server. In the product selection list, select eStandards
>webMethods SWIFT Module 7.1 SP1 and any other products and items you want to
uninstall.

4 Restart the host Integration Server.

5 The Software AG Uninstaller removes all SWIFT Module 7.1 SP1-related files that
were installed into the Integration Server_directory\ packages directory. However, the
Uninstaller does not delete files created after you installed the module (for example,
user-created files or configuration files), nor does it delete the module directory

structure. You can navigate to the Integration Server_directory \ packages directory and
delete the WmSWIFT-related directories.

60 webMethods SWIFT Module Installation and User’s Guide Version 7.1

I I Configuring SWIFT Module for Message Exchange

Over SAA
B Configuration Steps for Message Exchange over SAA i 63
B Importing BICPIusIBAN and SEPA Routing Directories, 69
B Defining Trading Networks Information i 77
B Creating Validation RUIESo 83
B Creating Inbound and Outbound Mapping Servicesccoiiiiiiiiniinnenn. 87
B Customizing Trading Partner Agreementsttt 93
B Configuring Processing Rules to Send and Receive SWIFT FIN Messages 101
B Using SWIFT Module SDK SEIVICES\ttt 105
B Configuring SWIFT INterfaces e e 109
B Configuring Notifications for Messagesin XMLVv2 Format 119
B Using SAA to Exchange XML v2 Wrapped MT and MX Messagesoovvnn.. 125
B Working with Market Practicest 143
webMethods SWIFT Module Installation and User’s Guide Version 7.1 61

Il Configuring SWIFT Module for Message Exchange Over SAA

62

webMethods SWIFT Module Installation and User’s Guide Version 7.1

3 Configuration Steps for Message Exchange over SAA

B O I B oottt 64
B Step 1: Import BICPIUSIBAN LISto 64
B Step 2: Define Trading Partner Profiles o i 64
B Step 3: Create Validation RUleS 65
B Step 4: Write Inbound and Outbound Mapping Services ..., 65
B Step 5: Modify Trading Partner Agreementsoouiiiiiiiinnnnnn.. 65
B Step 6: Manage SWIFT Message Processing Rules and Message Execution 66
B Step 7: Configure SWIFT Interfaces e 66
B Step 8: Configure Notification Processingovuiriiii e 66
B Step 9: Configure MT/MX Message Exchange Over SAA it 67
webMethods SWIFT Module Installation and User's Guide Version 7.1 63

3 Configuration Steps for Message Exchange over SAA

Overview

This chapter describes how to configure Integration Server to prepare to send and receive
SWIFT FIN messages using the services in SWIFT Module. The subsequent chapters in
this guide provide more detailed information about each of these steps.

To see sample SWIFT Module services that demonstrate how to send and receive SWIFT
messages and to learn more about how to install and use other SWIFT Module samples,
see webMethods SWIFT Module Samples Guide.

Important! The following steps assume that you have already installed Integration Server,
Trading Networks, Designer, My webMethods Server, the necessary SWIFT software, the
SWIFT Module packages, and the appropriate software for the SWIFT interface that you
want to use. For more information about what SWIFT software you need, work with
SWIFT to determine your software needs. For more information about installing SWIFT
Module, see Chapter 2, “Installing webMethods SWIFT Module” on page 51.

Step 1: Import BICPlusIBAN List

SWIFT Module provides support for deriving or validating data against the
BICPlusIBAN and SEPARouting directories. You can use those directories to supply or
validate data in international payment messages, for example to translate the beneficiary
bank's BIC into national (clearing, sort) code, and in SEPA (Single Euro Payment Area)
payments, for example to derive the BIC from the IBAN, if missing, or validate IBAN/BIC
combinations. To derive or validate data against the BICPlusIBAN and SEPA Routing
directories, you must import the BICPlusIBAN, IS and SR lists provided by SWIFT using
the SWIFT Module user interface.

Before you import a list, you first must create a database table to hold the SWIFT list. For
instructions on how to create a database table and import a list into Integration Server,
see Chapter 4, “Importing BICPlusIBAN and SEPA Routing Directories”.

Step 2: Define Trading Partner Profiles

In My webMethods, define the Trading Networksassets required for processing
messages.

B For each SWIFT message that you want to exchange with your partner financial
institutions, you must create a message record by running the wm.fin.dev:importFINItems
service for the message DFD.

B Create trading partner profiles for your organization and for all the financial
institutions with whom you will exchange SWIFT FIN messages.

B Modify Trading Partner Agreements for each of your partners.

64 webMethods SWIFT Module Installation and User’s Guide Version 7.1

3 Configuration Steps for Message Exchange over SAA

For more information about defining trading partner profiles, see Chapter 5, “Defining
Trading Networks Information”.

Step 3: Create Validation Rules

Software AG provides network validation rules for a number of commonly used message
types. In addition to these rules, SWIFT Module enables you to create network validation
rules for additional messages as well as create usage validation rules.

For more information about creating validation rules, see Chapter 6, “Creating Validation
Rules”.

Step 4: Write Inbound and Outbound Mapping Services

To send and receive messages, you must create inbound and outbound mapping services
that define how SWIFT Module should process each message. These services are used in
the management of SWIFT message execution that you define in “Step 6: Manage SWIFT
Message Processing Rules and Message Execution” on page 66.

B Create an outbound mapping service to map a message from the format of a back-end
system to SWIFT message format before sending it to another financial institution.

B Create an inbound mapping service to map a SWIFT message received from another
financial institution to an internal message format.

For more information about mapping business documents, see Chapter 7, “Creating
Inbound and Outbound Mapping Services”.

Step 5: Modify Trading Partner Agreements

A trading partner agreement (TPA) is a set of parameters that govern how you exchange
a SWIFT message with a trading partner. When running the wm.fin.dev:importFINItems
service for a message DFD to create a record, you can also choose to create the
corresponding TPA.

Before the system can use the TPA, you must modify the parameters as needed to process
the message, and then set the TPA's status to “Agreed.”

Important! The subfieldFlag input parameter in the TPA supports the parsing of SWIFT
messages to the subfield level. If you change the value of the subfieldFlag after creating the
message records, you must delete the message records pertaining to the TPA and recreate
them.

For information about modifying TPAs for use with SWIFT FIN messages, see Chapter 8,
“Customizing Trading Partner Agreements”.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 65

3 Configuration Steps for Message Exchange over SAA

Step 6: Manage SWIFT Message Processing Rules and
Message Execution

Trading Networks processing rules manage the execution of SWIFT FIN messages. When
you run the importFINDev service to import the message record, a processing rule is also
created.

For information about sending and receiving SWIFT FIN messages using processing
rules, see Chapter 9, “Configuring Processing Rules to Send and Receive SWIFT FIN
Messages”. For general information about Trading Networks processing rules, see the
Trading Networks administration guide for your release. See “About this Guide” for
specific document titles.

Step 7: Configure SWIFT Interfaces

Use the instructions in the section listed to configure the SWIFT interface you are using:

To configure the

SWIFT interface... Use instructions in this section...

MQHA “Using WebSphere MQ Adapter to Communicate with SWIFT” on
page 110.

CASmf “Using the CASmf Services to Communicate with SWIFT” on
page 112.

AFT “Using AFT to Communicate with SWIFT” on page 116.

Step 8: Configure Notification Processing

SWIFT Module handles all levels of notifications: information, transmission, and delivery
that SWIFT Alliance Access sends in response to requests from SWIFT Module. SWIFT
Module allows the site to handle the notifications by setting-up site-specific processing
using Trading Networks processing rules. SWIFT Module also provides the TN
documents required to recognize the notification messages.

Incoming notifications are saved in Trading Networks and associated with the original
message by a Trading Networks processing rule. You can see all related messages by
viewing the documents in Trading Networks.

For more information about configuring notifications, see Chapter 12, “Configuring
Notifications for Messages in XML v2 Format”.

66 webMethods SWIFT Module Installation and User’s Guide Version 7.1

3 Configuration Steps for Message Exchange over SAA

Step 9: Configure MT/MX Message Exchange Over SAA

SWIFT Module sends and receives MT and MX messages to SWIFT Alliance Access
wrapped in XML v2 data format. XML v2 format is an XML-based format for information
exchange between back-end applications and SAA. You can configure custom services
process incoming messages from SAA.

For information about how to transport MT and MX messages to SAA in XML v2 data
format, see Chapter 13, “Using SAA to Exchange XML v2 Wrapped MT and MX
Messages”.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 67

3 Configuration Steps for Message Exchange over SAA

68

webMethods SWIFT Module Installation and User’s Guide Version 7.1

4 Importing BICPIlusIBAN and SEPA Routing Directories

O IV I o oo e
IMPOMtING LIStS .\ttt
Business Examples of Using the BICPIUSIBAN Directoryovvvrvuinnnnnnnn..
Business Examples of Using the SEPA Routing Directory,

Searching BIC Information

70
71
72
73
74

webMethods SWIFT Module Installation and User’s Guide Version 7.1

69

4 Importing BICPIusIBAN and SEPA Routing Directories

Overview

SWIFT Module provides support for deriving or validating data against the BIC or
BICPlusIBAN directory. A BIC list provides a list of valid BICs for all existing SWIFT
financial institutions. All SWIFT FIN messages are validated against this BIC list to
ensure that the sender and receiver are valid. BICPIusIBAN is a SWIFT directory that
contains identifiers recognized by financial institutions, such as Bank Identifier Codes
(BICs), International Bank Account Numbers (IBANSs), and national clearing codes. The
SWIFT BICPlusIBAN directory serves two main purposes:

B Provides or validates data in international payment messages, for example to
translate the beneficiary bank's BIC into national (clearing, sort) code, or validate the
banks' details (such as name and address).

B Provides or validates data in SEPA (Single Euro Payment Area) payments, for
example to derive the BIC from the IBAN if missing, or validate IBAN/BIC
combinations.

SWIFT Module also supports the SEPA Routing Directory that contains the BICs and
names of the financial institutions that have signed the SEPA Credit Transfer Adherence
Agreement, the operational BICs of institutions that are able to process the SEPA
payments, the channels through which the financial institutions can receive the SEPA
payments, and the channel preference. With the SEPA Routing Directory, financial
institutions sending SEPA payments can:

B Verify that the operational BICs of their correspondent are SEPA-adherent and
operationally ready for SEPA.

B Verify the available channels (SEPA-ready Automated Clearing Houses) for payment
routing.

Using the Search BIC Information Tool

SWIFT Module enables you to import and search financial institution data in the BIC
directory, BICPlusIBAN directory, and the SEPA Routing directory. The Search BIC
Information or Search BICPlusIBAN Information tool is useful when you are preparing
an instruction and need to verify BIC information. For more information, see “Searching
BIC Information” on page 74.

70 webMethods SWIFT Module Installation and User’s Guide Version 7.1

4 Importing BICPIusIBAN and SEPA Routing Directories

To use the search BIC Information tool and the BICPIusIBAN and/or SEPA Routing directories
1 Use Integration Server Administrator to import the following data lists:

m BIC—Contains institution identifiers, such as BIC-related data of financial
institutions.

m BICPlusIBAN — Contains institution identifiers, such as BICs and IBAN-related
data of financial institutions.

m IBAN Structure (IS)—Contains records with the country codes and national ID
codes, as well as the position of those codes in the IBAN structure. You must use
the BICPlusIBAN list together with the IBAN Structure list to derive a BIC from
an IBAN, to validate a BIC, a Bank ID, or an IBAN/BIC combination.

= SEPA Routing (SR)—Contains SEPA identifiers. Use this list to validate the BICs
and IBANs in SEPA payments against the SWIFT BICPlusIBAN directory.

See “Importing Lists” on page 71 for details how to import the lists.

2 In Designer, use one of the BIC/BICPlusIBAN or SEPA built-in services supported by
SWIFT Module.

For examples of business scenarios in which you would use SWIFT Module to derive or
validate data against the BICPlusIBAN or SEPA Routing directory, see “Business
Examples of Using the BICPlusIBAN Directory” on page 72 and “Business Examples of
Using the SEPA Routing Directory” on page 73.

See Appendix A, “Services” for details about the BIC/BICPlusIBAN and SEPA related
built-in services, provided by SWIFT Module.

Importing Lists

You can import a BIC, BICPlusIBAN, IS, or SR list into Integration Server by creating a
database table to hold the list data for each type of list. webMethods provides database
scripts to create empty database tables for storing the imported data. These scripts
support different databases.

After you have created the empty data table for each type of list, you can import the most
recent list of SWIFT data into the respective database table from the CD provided to you
by SWIFT. To do so, use the Import List tool on the SWIFT Module user interface in
Integration Server Administrator.

Note: SWIFT Module provides sample BIC, BI (BICPlusIBAN), IS, and SR files that you
can format as needed, before importing through the Import Lists feature of SWIFT
Module. You can import the .txt files for the listed sample database files from the
following location Integration Server_directory\ packages\ WmFIN \ config \ bic\samples.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 71

4 Importing BICPIusIBAN and SEPA Routing Directories

Creating an Empty Database Table

To create an empty database table

1

With your database server running, verify that you have a Trading Networks
database in which to add a table.

Note: SWIFT Module works with the same database as Trading Networks for the BIC,
BICPlusIBAN, and the SEPA Routing Directories feature.

Follow your database server's documentation instructions and import the file list into
your selected database. Use the following table as a guide to locate the file that
corresponds to the type of list you want to import.

Note: webMethods provides scripts for SQL Server, Oracle, and DB2 databases at the
specified location. The db in the file name indicates the name of the database to use.
Valid values are SQLServer, Oracle, and DB2.

List Type ::r:![zgration Server_directory\packages\WmFIN\config\bic\...
BIC create_BIC_db.sql

BICPlusIBAN create_IBAN_db.sql

IS create_IS_db.sql

SR create_SR_db.sql

Importing a List

To import a list

1
2

In Integration Server Administrator, select Adapters > SWIFT.

On the SWIFT Module home page, click the name of the list you want to import, for
example Import BICPIusIBAN List.

In the File Name box, type the full directory path and name of the list data file that you
want to import. To locate the file, you can click Browse.

Click Import. The new list is imported into the database table for this list type and
made available to SWIFT Module. This process might take a few minutes.

Business Examples of Using the BICPIusIBAN Directory

The following table provides examples of business scenarios in which you would use
SWIFT Module to derive or validate data against the BICPIusIBAN directory:

72

webMethods SWIFT Module Installation and User’s Guide Version 7.1

4 Importing BICPIusIBAN and SEPA Routing Directories

To...

Use the...

Search for the bank details of a financial
institution (for example name and address)
to create or validate international
payments.

Search BIC Information function of the
SWIFT Module user interface as
described in “Searching BIC
Information” on page 74.

Validate the national code (National ID) of
a bank and the clearing system used in an
international payment.

wm.fin.bic:validateBankID service

Translate IBAN into BIC, if the BIC is
missing, for SEPA payments or other cross-
border payments.

wm.fin.bic:deriveBICfromIBAN service

Construct IBAN from an account number.

wm.fin.bic:generatelBAN service

Validate if the BIC of a financial institution
is valid when you want to order payment
to that institution.

wm.fin.bic:validateBICCode service

Validate that the BIC and the IBAN in
SEPA payments belong to the same
financial institution.

wm.fin.bic:validateBICIBAN service

For information about the business logic behind these services, see your SWIFT
documentation or go to http://www.swift.com.

Business Examples of Using the SEPA Routing Directory

The following table provides examples of business scenarios in which you would use
SWIFT Module to derive or validate data against the SEPA Routing directory:

To...

Use the service...

Determine if a BIC is ready to receive SEPA

payment instructions for a particular
scheme and verify an institution's
operational readiness for SEPA schemes.

wm.fin.sepa:checkOperationalReadiness

Confirm that an institution has signed an
adherence agreement and that it is
published in the adherence database for a
particular scheme.

wm.fin.sepa:validateAdherenceStatus

List the different payment channels
available for an institution when you want
to determine the optimal channel among
the available options.

wm.fin.sepa:getAvailablePaymentChannels

webMethods SWIFT Module Installation and User’s Guide Version 7.1 73

4 Importing BICPIusIBAN and SEPA Routing Directories

To... Use the service...

Determine whether an institution has wm.fin.sepa:getPreferredPaymentChannel
specified a preferred payment channel for
receiving payment instructions.

Identify other payment channels, for wm.fin.sepa:getOtherPaymentChannel
example when the sending institution can

not use the payment channel through

which the receiving institution is indirectly

reachable, or there is no matching payment

channel between the sending and receiving

institutions.

For information about the business logic behind these services, see your SWIFT
documentation or go to http://www.swift.com.

Searching BIC Information

Using the Search BIC Information tool on the SWIFT Module home page in Integration
Server Administrator, you can search the most recent SWIFT BIC and BICPlusIBAN lists
published by SWIFT in SWIFT Module.

To search BIC information from BIC or BICPlusIBAN directories

1 In the Integration Server Administrator, on the SWIFT Module home page, click
either Search BIC Information or Search BICPIlusIBAN Information.

2 On the BIC Search Criteria screen, provide your search criteria. You must enter
information in at least one field, but can narrow search results by entering
information in as many fields as necessary.

Note: All fields on this screen are case-sensitive. If you want to do a partial search,
enter '%partial search string%".

Field Name Description

Code The institution's BIC code, for example, ABCDEFGHIJK.
Institution The institution's name, for example, Citibank.
Branch The institution's branch name, for example, Main.
City The institution's city, for example, Miami.

74 webMethods SWIFT Module Installation and User’s Guide Version 7.1

http://www.swift.com

4 Importing BICPIusIBAN and SEPA Routing Directories

Field Name Description

Modified Flag From the drop-down list, select the modification flag for
which you want to search:

B New. Search for a new BIC entry.

B Update. Search for a BIC entry currently being updated.

B Modified. Search for a modified BIC entry.
B Deleted. Search for a deleted BIC entry.

Location The institution's location, for example, Ma11.

Country Name The institution's country, for example, USA.

3 Click Search. The Search Results screen displays up to the first 50 matching BICs.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

75

4 Importing BICPIusIBAN and SEPA Routing Directories

76

webMethods SWIFT Module Installation and User’s Guide Version 7.1

5 Defining Trading Networks Information

B About Trading Partner Profiles 80
B About Trading Partner Profiles o 80
B About TN Document Types for SWIFT MESSagesvvvvviiiii e 82
webMethods SWIFT Module Installation and User’s Guide Version 7.1 77

5 Defining Trading Networks Information

Overview

This chapter provides information about defining Trading Networks assets, including
trading partner profiles and TN document types.

About Message Records

Before you can send and receive SWIFT FIN messages, you must first create a message
record for each SWIFT message that you will send and receive. You can also use network
and usage validation rules in your maps to validate your messages. Use SWIFT message
records to create inbound and outbound maps that define how particular messages are
handled. For information about mapping, see Chapter 7, “Creating Inbound and
Outbound Mapping Services”.

During installation, SWIFT Module automatically installs the SWIFT message DFDs
(including parsing templates) that are required to create a message record. These
elements are located in the Integration Server_directory\ packages\ WmFIN \import
directory. (For information about parsing templates, see Appendix B, “XML Parsing
Templates for SWIFT FIN Messages”

Trading Networks assets are also required to create a message record for a SWIFT
message, but must be imported manually as explained in the following procedure.

Creating Message Records

To run the wm.fin.dev:importFINItems service

1 In Designer, navigate to the WmFIN package and run the wm.fin.dev:importFINItems
service. (For information about running services in Designer, see the Designer Service
Development online help.)

2 Define the fields as specified in the following table:

Field Description
msgType FIN message type, for example, 564.
version FIN version, for example, nov10.

78 webMethods SWIFT Module Installation and User’s Guide Version 7.1

5 Defining Trading Networks Information

Field

Description

format

The format of the generated blocks and fields for the input FIN
message. Valid values:

B TAG_BIZNAME (default). SWIFT message tag followed by the
business name specified in the message DFD, for example,
23G_Function of the Message. This format provides the
best balance between readability and performance
(causing half of the performance penalty of BIZNAMEONLY
because lookups are used only when receiving a message).

B TAGONLY. SWIFT message tag only, for example, 236G:. This
is the simplest format, provides the best performance, and
is best-suited to those already familiar with SWIFT and
specific messages.

B BIZNAMEONLY. Business name specified in the message DFD
only, for example, Function of the Message. This format
carries the largest performance penalty.

B XMLTAG. XML-compatible tag name, for example, F23G. This
format lets you take advantage of the XML-specific
services and functionality provided by Integration Server,
such as pub.xml:documentToXMLString. This format cannot
contain colons or tags that begin with a number.

subfieldFlag

Indicates whether the IS document type generated for the FIN
message is parsed to the field or subfield level. Valid values
are:

B true. Parses to the subfield level. For inbound messages,
SWIFT Module automatically removes the SWIFT
delimiter (/) from between subfields. For outbound

messages, SWIFT Module adds the SWIFT delimiter (/)
between subfields.

B false. Parse to the field level.

createDocType

Indicates whether to create and insert a TN document type,
used to recognize an incoming message). Set to true.

createProcessing
Rule

Indicates whether to create a Trading Networks processing
rule that specifies steps to execute for message processing.

B true (default). Create a processing rule.

B false. Do not create a processing rule.

Important! If you are using processing rules to manage SWIFT
FIN messages, you should always set this field to true.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 79

5 Defining Trading Networks Information

Field Description

createTPA Set this field to true to create and insert a Trading Networks
trading partner agreement (TPA) for this message. A TPA is a
set of parameters that govern how SWIFT FIN messages are
exchanged between two trading partners.

Important! You should always set this field to true.

The wm.fin.devimportFINItems service copies the SWIFT message parsing templates and
DFDs from the import folder into the DFD folder of the WmFIN package and creates the
following assets for each message:

B IS Document Type

TN document type

Trading Partner Agreement (in “Proposed” status)
Processing rule to process an inbound SWIFT message

Network validation rules (if available)

Market Practice rules (if available)

Note: SAA sends SWIFT Acknowledgements (ACKs) and Negative Acknowledgements
(NACKs) to SWIFT Module. DFDs for SWIFT ACKs and NACKs are automatically
installed for you the first time you initialize Integration Server after installing SWIFT
Module. The TN document types for ACKs and NACKs are added to the Trading
Networks database if they are not already installed. The corresponding IS document
types ACKs and NACKs are located in the wm.fin.doc.catF folder of the WmFIN
package. The SWIFT templates for ACKs and NACKs are located in the directory:
Integration Server_directory\ packages\ WmFIN\ config\dfd.IS document types are
created in the WmFINMessages package in the appropriate version folder and message
category (for example, wm.fin.doc.nov10.cat5).

About Trading Partner Profiles

Trading partner profiles help define how you and your trading partners exchange SWIFT
messages and files. TN document types enable Trading Networks to identify a business
document and determine what information to extract from it.

A trading partner is any person or organization with whom you conduct business
electronically. In SWIFT Module, a trading partner is defined by the criteria that you
specify in a trading partner profile. This includes the company name and other
identifying information, such as contact information and preferred delivery methods.

80 webMethods SWIFT Module Installation and User’s Guide Version 7.1

5 Defining Trading Networks Information

Why Are Trading Partner Profiles Important?

Trading partner profiles, trading partner agreements (TPAs), and processing rules,
together define how you and your trading partners exchange SWIFT messages.
Processing rules define the actions your company takes in certain transactions, as well as
the actions you expect your trading partners to perform during those transactions. In fact,
the definition of profiles, the configuration of processing rules, and the application of
TPAs are what enable you to interact successfully with your trading partners.

You must define a trading partner profile for each of your trading partners and,
additionally, one for your own organization (MyEnterprise).

Defining Trading Networks Profiles

This section explains how to define Trading Networks profiles.

To define Trading Partner Profiles

1 Define your enterprise profile (My Enterprise) in Trading Networks by completing the
following required fields:

Required Profile Field for Enterprise Description

Corporation Name The name of your enterprise
External ID Type BIC
External ID Type Value Your enterprise's BIC

Note: The BIC External ID Type is added to the Trading Networks database when you
run the script to create a BIC table in the database.

2 Define a trading partner profile in Trading Networks for each trading partner with
whom you exchange SWIFT messages and files, completing the following required
tields:

Required Profile Field for Trading Partner Description

Corporation Name The name of the trading partner
External ID Type BIC
External ID Type Value Your trading partner's BIC

For additional instructions on defining trading partner profiles, see the Trading
Networks administration guide for your release. See “About this Guide” for specific
document titles.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 81

5 Defining Trading Networks Information

About TN Document Types for SWIFT Messages

TN document types are definitions that tell Trading Networks how to identify a type of
business document and specify the attributes that Trading Networks should extract from
the business document.

When you run the wm.fin.devimportFINItems service (located in the WmFIN package) to
create a record for a particular SWIFT message DFD, you can specify that the service also
create the TN document types for this message.

When SWIFT Module receives a message, it invokes a Trading Networks service to
recognize the type of business document by using the TN document types and the
message records that you created. When Trading Networks matches the TN document
type to the corresponding business document, Trading Networks extracts the specific
pieces of information from the business document as indicated by the TN document type
definition.

Define a TN document type to identify the format of the document generated by your
back-end system that must be converted to a SWIFT message. When you create the TN
document type, be sure to extract the SenderID and ReceiverID system attributes. (These
values are the BICs for the sender and receiver.)

For instructions on defining TN document types, see the Trading Networks
administration guide for your release. See “About this Guide” for specific document
titles.

82 webMethods SWIFT Module Installation and User’s Guide Version 7.1

6 Creating Validation Rules

B Creating Validation RUIESo

webMethods SWIFT Module Installation and User’s Guide Version 7.1

83

6 Creating Validation Rules

Creating Validation Rules

Software AG provides network validation rules for a number of commonly used message
types. In addition to these rules, SWIFT Module enables you to create network validation
rules for additional messages as well as create usage validation rules.

Note: Although Market Practice rules function in much the same way as validation rules,
the configuration of Market Practice rules differs from that of validation rules. For more
information about Market Practice rules, see Chapter 14, “Working with Market
Practices” on page 143.

Creating Network Validation Rules

When SWIFT Module sends and receives a SWIFT message, it validates the message at
either the individual field level or across the fields using network validation rules as
specified by SWIFT. SWIFT Module sends a message only when the message structure,
syntax, and validation rules are applied. Software AG provides network validation rules
for version may10, as flow services, for you to use with the SWIFT FIN messages that you
import. When you create a message record, the corresponding network rule (as a flow
service) is imported into Integration Server and placed in the WmFINMessages package
along with the message record.

After SWIFT Module syntactically validates a message, it executes the corresponding
network rule. If you are using process models, any validation errors are aggregated and
reported in Integration Server and Process Engine error logs.

Software AG provides network validation rules for the following SWIFT FIN messages:
MT 101 Request for Transfer

MT 103 Single Customer Credit Transfer

MT 103STP Single Customer Credit Transfer
MT 202 General Financial Institution Transfer
MT 300 Foreign Exchange Confirmation

MT 320 Fixed Loan/Deposit Confirmation

MT 502 Order to Buy or Sell

MT 515 Client Confirmation of Purchase or Sale
MT 535 Statement of Holdings

MT 536 Statement of Transactions

MT 537 Statement of Pending Transactions

MT 540 Receive Free

MT 541 Receive Against Payment

84 webMethods SWIFT Module Installation and User’s Guide Version 7.1

6 Creating Validation Rules

MT 542 Deliver Free

MT 543 Deliver Against Payment

MT 544 Receive Free Confirmation

MT 545 Receive Against Payment Confirmation
MT 546 Deliver Free Confirmation

MT 547 Deliver Against Payment Confirmation
MT 548 Settlement Status and Processing Advice
MT 564 Corporate Action Notification

MT 565 Corporate Action Instruction

MT 566 Corporate Action Confirmation

MT 567 Corporate Action Status and Processing Advice
MT 568 Corporate Action Narrative

MT 900 Confirmation of Debit

MT 910 Confirmation of Credit

MT 940 Customer Statement Message

MT 942 Interim Transaction Report

MT 950 Statement Message

You can create additional network validation rules for particular messages by writing
individual services based on the SWIFT message documentation (pdf) provided by
SWIFT. To use a new validation rule, you must specify the service you created in the
ValidationRule parameter in the TPA for the particular SWIFT message.

For more information about TPAs, see Chapter 8, “Customizing Trading Partner
Agreements” on page 93.

Creating Usage Validation Rules

Usage rules exist only for certain messages when being exchanged between two specific
partners. Software AG does not provide built-in usage rules because they vary by trading
partner pairs, but you can create usage rules for particular messages by writing
individual services based on the message documentation (.pdf) provided by SWIFT. To
implement a usage rule, you must specify the service you created in the UsageRule
parameter in the TPA for the particular SWIFT message.

For more information about TPAs, see Chapter 8, “Customizing Trading Partner
Agreements” on page 93.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 85

6 Creating Validation Rules

86

webMethods SWIFT Module Installation and User’s Guide Version 7.1

7 Creating Inbound and Outbound Mapping Services

B What Is Message “‘Mapping?” 88
B Creating an Outbound Mapping SErviCeuiriii i 89
B Creating an Inbound Mapping Service 91
B Parsing to the Subfield Level a1
B Reusing Mapping SEIVICESttt e 92
webMethods SWIFT Module Installation and User's Guide Version 7.1 87

7 Creating Inbound and Outbound Mapping Services

What Is Message “Mapping?”

Message mapping is the process of assigning structure, values, or content of one message
to a different message; that is, mapping the matching values, data, and information
between messages. The reason you want to map messages is because, typically, your
back-end systems have different message formats than the format of a SWIFT message.

Why Create an Outbound Mapping Service?

Create an outbound mapping service to translate an outbound back-end proprietary
message format (for example, Oracle Financials) to SWIFT message format. Elements of
the proprietary message must be mapped to corresponding elements of a SWIFT message
(for example, MT 541, Receive Against Payment). Extra elements in the back-end message
are ignored; however, you must map values to all elements in the SWIFT message.

Examples of outbound mapping services are located in the SWIFT Module samples. For
more information about the SWIFT Module sample services, see webMethods SWIFT
Module Samples Guide.

Why Create an Inbound Mapping Service?

Create an inbound mapping service to map each element of an inbound SWIFT message
to a corresponding element in your back-end proprietary message format. For example, if
you use Oracle Financials and you want to receive a SWIFT message via SWIFT Module,
you would create an inbound mapping service that maps each element of the SWIFT
message to a corresponding element in the Oracle Financials format.

Examples of inbound mapping services are located in the SWIFT Module samples. For
more information about the SWIFT Module sample services, see webMethods SWIFT
Module Samples Guide.

Example of Mapping a Message

The following figure illustrates the process of mapping a message. For further
explanation, see the text that follows the figure.

88 webMethods SWIFT Module Installation and User’s Guide Version 7.1

7 Creating Inbound and Outbound Mapping Services

Step Description

1 Trading Partner A uses an outbound mapping service to map an internal
message from a back-end format to SWIFT format.

2 Trading Partner A sends the SWIFT message to Trading Partner B.

3 Trading Partner B receives the SWIFT message and uses an inbound

mapping service to map the SWIFT message to an internal message. After
the internal message is mapped, it is in a format that Trading Partner B's
back-end system can process.

4 Trading Partner B responds by using an outbound mapping service to map
an internal message from a back-end format to SWIFT format.

5 Trading Partner B sends the SWIFT message to Trading Partner A.

6 Trading Partner A receives the SWIFT message and uses an inbound

mapping service to map the SWIFT message to an internal message. After
the SWIFT message is mapped, it is in a format that Trading Partner A's
back-end system can process.

Creating an Outbound Mapping Service

Use Designer to create an outbound mapping service. The service must contain one or
more MAP entities that map the message from the format of your back-end system,
through any desired intermediate steps, to the IS document type for the appropriate
outbound SWIFT message.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 89

7 Creating Inbound and Outbound Mapping Services

Inputs and Outputs

The input to the outbound mapping service is your back-end system document provided
as the TN document type in the variable “bizEnv.”

Note: For information about retrieving your back-end document from the bizEnv variable,
see the outbound mapping services in the SWIFT Module samples, described in the
webMethods SWIFT Module Samples Guide.

The outbound mapping service generates the output as the SWIFT message in the
documents\ payload IData object in the pipeline. For example, if you are mapping your
back-end message to MT 564, the output of the mapping service would be MT564 in the
documents \ payload IData object. See the figure in “Example of Mapping a Message” on
page 88 for more information.

The output of the outbound mapping service must be placed in the documents\ payload
IData object. SWIFT Module converts an IData object into an XML string before sending
the SWIFT message to the trading partner, and therefore must know the precise location
of the IData object.

You must place the Agreement ID for this TPA in the documents\tpaAgreementID IData
object. For more information about Agreement IDs, see Chapter 8, “Customizing Trading
Partner Agreements”on page 93.

Note: If the documents for your back-end system have DTDs, you can automatically
import an external DTD in Designer to provide a starting point for mapping. To do so,
create an external record and specify the source as XML, DTD, or XML Schema.

Flow Operations to Use

In the flow service, insert a MAP operation and use the service pipeline to map elements
of the IS document type from your back-end message to all elements of the IS document
type for the appropriate SWIFT message. Built-in IS document types for all versions of
SWIFT FIN messages that you imported are located in the WmFINMessages package in
wm \ fin\ doc\ version \ category folders as illustrated in the following figure.

90 webMethods SWIFT Module Installation and User’s Guide Version 7.1

7 Creating Inbound and Outbound Mapping Services

1)

il]

= [ﬁ] WmF e sages

= Eﬁ il
Thiz folkder = B fin
contams all 15 o B doc
document = & novoa
mooreds B @ cats
» 3 mTa00
) VumFIstFile

Creating an Inbound Mapping Service

In Designer, just as with outbound mapping services, create a new inbound mapping
service that contains one or more MAP entities. The MAP entities perform the actual
mapping from the received SWIFT FIN messages through any intermediate steps, to the
format of your back-end system messages. The inputs to any inbound mapping service
include the following variables:

B finlData. The message in TAG format.

B convertedFinIData. The format specified in the message TPA (for example,
TAG_BIZNAME).

Parsing to the Subfield Level

You can configure SWIFT Module to parse to the subfield level in your outbound and
inbound mapping services. To do so, set the subfieldFlag variable to true when invoking
the following services:

B wm.fin.devimportFINItems

B wm.fin.dfd:convertTagFormat

B wm.fin.dfd:convertBizNameFormat

For information about these services, see Appendix A, “Services” on page 179.

For inbound messages, if you want to manually parse messages to the subfield level
(without using the subfield option), you must manually remove the SWIFT delimiter (/)
from between subfields. For outbound messages, if you want to manually identify
subfields (without using the subfield option), you must add the SWIFT delimiter.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 91

7 Creating Inbound and Outbound Mapping Services

Note: The DFDs files do not define subfields for some compound fields in the following
directories: Integration Server_directory\ packages\ WmFIN \ config\ dfd \ version and
Integration Server_directory\ packages\ WmFIN \import\version. If you require subfields
for a tag where they are not provided, you can edit the DFD files. Follow the SWIFT
documentation when adding subfields. The DFD files located in the
WmFIN\import\version directory take precedence over the DFD files located in the
WmFIN\ config\ dfd \ version directory.

Reusing Mapping Services

In SWIFT Module, you can reuse mapping services for trading partners that submit the
same business document format. For example, you can use the same mapping services
for Trading Partner A and Trading Partner B if they both always submit business
documents in the same document format to SWIFT Module. As the receiver of those
documents, you need to define only one inbound mapping service for both trading
partners because the message format versions are the same.

92 webMethods SWIFT Module Installation and User’s Guide Version 7.1

8 Customizing Trading Partner Agreements

B OVRIVIBW .ottt e e e e 94

B How Does SWIFT Module Identify @ TPA? e 94

B Modifying the TPA ..o o 94
webMethods SWIFT Module Installation and User’s Guide Version 7.1 93

8 Customizing Trading Partner Agreements

Overview

A Trading Partner Agreement (TPA) is a set of parameters that you use to govern how
SWIFT FIN messages are exchanged between two trading partners. TPAs also enable you
to define Market Practice requirements for individual markets. Using TPAs, SWIFT
Module supports customization of SWIFT FIN messages based on specific trading
partner pairs.

You can modify and view TPAs in the Agreement Details screen in My webMethods.

For detailed information about working with TPAs, see the Trading Networks
administration guide for your release. See “About this Guide” for specific document
titles.

How Does SWIFT Module Identify a TPA?

Every SWIFT message in SWIFT Module is associated with a TPA. Every TPA is uniquely
identified by a Sender, Receiver, and Agreement ID. During a business process between
trading partners, SWIFT Module uses this information to retrieve the TPA for a specific
sender-receiver pair and to process the messages exchanged.

After SWIFT Module recognizes and associates an incoming SWIFT message with a
particular TN document type, it uses the TN document type name in the business
document (such as “MT541,”) to find a TPA matching sender-receiver pair.

When SWIFT Module creates a message record, it automatically creates the TPA for the
particular SWIFT message. You can view and modify the selected “Proposed” TPA in
Trading Networks.

Modifying the TPA

This section describes how to modify a TPA to send and receive messages in SWIFT
Module.

To modify Trading Partner Agreements

1 Inthe Agreement Details screen, define the parameters as described in the table

below:
TPA Information Description
Sender The name of the sending trading partner or “Unknown.”.

Select the sender from the profiles defined in Trading
Networks, including your own profile.

If you specify a partner for sender, you must also specify a
partner for receiver. Likewise, if you specify Unknown for
sender, you must specify Unknown for receiver.

94 webMethods SWIFT Module Installation and User’s Guide Version 7.1

8 Customizing Trading Partner Agreements

TPA Information

Description

Receiver

The name of the trading partner that receives the message
from SWIFT. Select the receiver from the profiles defined in
Trading Networks, including your own profile.

Agreement ID

Uniquely identifies the agreement between two partners, for
example, MT541. This is a placeholder for the TN document
type name (for example, “MT541”)

IS Document Type

The IS document type wm.fin.doc:UserParameters (located in the
WmFIN package) specifies the SWIFT TPA parameters.

Agreement Status

Set to “Agreed.” To process messages according to a TPA, both
sender and receiver TPAs must have the Agreement Status,
“Agreed.”

Note: The Sender and Receiver fields initially display a default value of “Unknown.”
The TPA identifies the business names of the sender and receiver, however, SWIFT
Module identifies the sender and receiver using their BIC.

2 Complete the following additional SWIFT-specific TPA input parameters.

TPA Section Parameter Description
FIN Transport The SWIFT interface used to send and receive
Process SWIFT FIN messages. Valid values are:

Info

B MQ (Default). WebSphere MQ Adapter.
B CASmf. CASmf interface.

B AFT. Automated File Transfer interface.
[|

TEST. Tests the processing of a FIN message
without sending the message to SWIFT.

MessageType The SWIFT FIN message type identifier, such as

541, Receive Against Payment.

ISDocument IS document type for this message. IS document

Name types for each message are located in the

WmFINMessages package, for example,
wm.fin.doc.nov10. cat5:MT541.

Version Version of the SWIFT message, for example nov10.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

95

8 Customizing Trading Partner Agreements

TPA Section Parameter

Description

Message
Format

The format of the generated blocks and fields for
the input FIN message. Valid values are:

B TAG_BIZNAME (default). SWIFT Message tag
followed by the business name specified in the
message DFD, for example, 23G_Function of
the Message.

B TAGONLY. SWIFT Message tag only, for example,
23G:.

B BIZNAMEONLY. Business name specified in the
message DFD, for example, Function of the
Message.

B XMLTAG. XML-compatible tag name. This format
cannot contain colons or tags that begin with a
number, for example, F23G.

SubfieldFlag

Indicates whether to parse SWIFT messages to the
field or subfield level. Valid values are:

B true (default). Parse to subfield level.

B false. Parse to field level.

Note: If you change this setting after creating
message records, you must delete the message
records pertaining to the TPA and recreate them.

Inbound

ProcessingRule
Service

Optional. Indicates whether to use a processing
rule to manage message execution. To do so, type
the service name to use. For more information, see
“Receiving Messages from SWIFT” on page 103.

Validate
Content

Optional. Indicates whether to validate the
message. Valid values are Yes and No.

ValidateBIC
Plus

Optional. Indicates whether to validate BIC
information in the message. Valid values are Yes
and No.

Validate
NetworkRules

Optional. Indicates whether to validate the
message against network rules. Valid values are
Yes and No.

Network
ValidationServi
ce

Optional. Name of the network validation service
to use to validate network rules.

96

webMethods SWIFT Module Installation and User’s Guide Version 7.1

8 Customizing Trading Partner Agreements

TPA Section Parameter

Description

ValidateMarket ~ Optional. Indicates whether to validate the
PracticeRules ~ message against market practice rules. Valid
values are Yes and No.
MarketPractice Optional. Name of the market practice rules
RulesService validation service to use.
ValidateUsage ~ Optional. Indicates whether to validate this
Rules message against usage rules. Valid values are Yes
and No.
UsageRules Optional. Name of the usage validation service to
Service validate the usage rules.
Message This section contains information to be populated in blocks {B1},
Header {B2}, and {B3} of the outbound SWIFT message.
Logical The logical terminal identifier defined in SAA.
Terminal
Application Identifies the application within which the
Identifier message is sent or received. Valid values are:
B F. SWIFT FIN. All FIN user-to-user, FIN
system, and FIN service messages.
B A. GPA. GPA system and service messages.
B L. GPA. Certain GPA service messages (for
example, LOGIN, LAK, ABORT).
Service Identifies the type of data being sent or received:
Identifier B 01—User-to-user messages.
B 21—Message acknowledgements.
Priority Indicates the priority with which to deliver the

message to the receiver. Valid values are:
B N—Deliver with normal priority.
B U—Deliver with urgent priority.

B S—Deliver with system priority.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 97

8 Customizing Trading Partner Agreements

TPA Section

Parameter

Description

Delivery
Monitoring

Optional. Enables the sender to request delivery
monitoring. Valid values are:

B None—Do not perform delivery monitoring.

B 1—Non-delivery warning. Requests automatic
MTO010 warning if message is not delivered
within the obsolescence period, (15 minutes for
U Priority, 100 minutes for N Priority).

B 2—Delivery notification. Requests automatic
MTO11 notification after message is delivered.

B 3—Both. Requests both automatic non-delivery
warning and delivery notification.

FINCopy
Service
Identifier

Optional. (Used with FINCopy messages only.)
Three-character system ID used to support access
to multiple services with the same CBT.

Banking
Priority

Optional. Four-character field agreed upon by two
or more parties to indicate priority.

ValidationFlag

Optional. Indicates whether special validation
must be completed at SWIFT. For information
about the MT message standards, see the SWIFT
User Handbook/Standards.

Addressee
Information

Optional. Information from the central institution
to the receiver of the payment message. This
information is used in the input of MT097, FIN
Copy Message Authorization Refusal Notification.

Training

Indicates whether a message is sent to or received
from a test and training logical terminal.

MQSeries
Info

putMessage
HandlerService

The name of the service generated when creating a
message handler service for IS-to-WebSphere MQ
transport. For more information, see “Using
WebSphere MQ Adapter to Communicate with
SWIFT” on page 110.

AFT

folder

Fully qualified path of the folder you want the file
polling listener to poll for this message, for
example, c:\folder\bic.dat.

Important! This folder must be accessible by both
Integration Server and SAA.

extension

Optional. File extension of the files to be received
from the AFT folder. The default is inp.

98

webMethods SWIFT Module Installation and User’s Guide Version 7.1

8 Customizing Trading Partner Agreements

For complete instructions on modifying TPAs, see the Trading Networks administration
guide for your release. See “About this Guide” for specific document titles..

webMethods SWIFT Module Installation and User’s Guide Version 7.1 99

8 Customizing Trading Partner Agreements

100 webMethods SWIFT Module Installation and User’s Guide Version 7.1

9 Configuring Processing Rules to Send and Receive
SWIFT FIN Messages

B OV I BI .oo 102
B Sending Messages t0 SWIFT ... 102
B Receiving Messages from SWIFT 103

webMethods SWIFT Module Installation and User’s Guide Version 7.1 101

9 Configuring Processing Rules to Send and Receive SWIFT FIN Messages

Overview

SWIFT Module enables you to use customized Trading Networks processing rules to
send and receive SWIFT messages. This chapter explains how to use custom-created rules
to send and receive SWIFT messages.

Sending Messages to SWIFT

You can send messages to SWIFT using a service that is invoked by a Trading Networks
processing rule.

Preliminary Steps for Sending Messages

Before you can configure Trading Networks processing rules to send outbound SWIFT
messages, you must do the following:

B Create Trading Partner Profiles, as described in Chapter 5, “Defining Trading
Networks Information”.

B Modify Trading Partner Agreements for each of your trading partners, as described in
Chapter 8, “Customizing Trading Partner Agreements”.

Assigning the Processing Rule

This section describes how to assign a processing rule to manage SWIFT FIN messages.
(For instructions on how to define processing rules, see the Trading Networks
administration guide for your release. See “About this Guide” for specific document
titles.

There are four steps to configuring a Trading Networks processing rule to send SWIFT
FIN messages:

B Define the criteria of the processing rule.
B Define the processing action.

B Create a service to map the document generated by the back-end system to a
webMethods DFD format.

B Invoke the service to submit the document to Trading Networks.

Step 1: Define the Processing Rule Criteria

Define the criteria of the processing rule on the Criteria tab as follows:

Criteria tab field Set to...
Document Type The TN document type for the format of the back-end
document.

102 webMethods SWIFT Module Installation and User’s Guide Version 7.1

9 Configuring Processing Rules to Send and Receive SWIFT FIN Messages

Step 2: Define the Processing Action

Define the processing action on the Action tab. Click Add Action and define the fields as
follows:

Action drop-down list ~ Set to...

Execute a service The service you created to map the back-end document to
webMethods DFD format. For more information on creating this
service, see “Step 3: Create a Service to Map to the DFD Format”
on page 103.

Important! You must select synchronous to invoke this service
synchronously.

Deliver DocumentBy Immediate Delivery and select FINTransport

The FINTransport delivery service uses variables specified in the
TPA to govern the creation and sending of the outbound SWIFT
message.

Step 3: Create a Service to Map to the DFD Format

Create a service to map the back-end document to webMethods DFD format using the
following logic:

1 Retrieve the back-end system document content from the BizDocEnvelope and
generate an IData object by invoking the wm.tn.doc.xml:bizdocToRecord service.

2 Map data from the back-end system document to webMethods DFD format for the
{B4} block of the SWIFT FIN message.

3 Convert the webMethods DFD format IData object to an XML String by invoking the
pub.xml:documentToXMLString service.

4 Convert the XML String to bytes by invoking the pub.string:stringToBytes service.

5 Invoke the wm.tn.doc:addContentPart service to add the bytes to the BizDocEnvelope as a
new content part. When you add the content part, you must name the content part
DFD Data.

Step 4: Submit the Document to Trading Networks

At run time, submit the back-end system document to Trading Networks by invoking the
wm.tn:receive service.

Receiving Messages from SWIFT

You can process inbound messages from SWIFT using a Trading Networks processing
rule to validate and process the inbound message.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 103

9 Configuring Processing Rules to Send and Receive SWIFT FIN Messages

Preliminary Steps for Receiving Messages

Before you can configure Trading Networks processing rules to receive SWIFT FIN
messages, you must do the following:

B Create Trading Partner Profiles, as described in Chapter 5, “Defining Trading
Networks Information”.

B Modify Trading Partner Agreements for each of your trading partners as needed, as
described in Chapter 8, “Customizing Trading Partner Agreements”.

Defining the Processing Rule

To create a service to map the webMethods DFD format to the back-end system format

1 Create a service to map the webMethods DFD format to the format of the back-end
system using the following variables in the pipeline:

® finlData—The message in TAG format.

m convertedFinlData—The format specified in the message TPA (for example,
TAG_BIZNAME).

2 Specify the name of this service in the message TPA InboundProcessingRuleService
parameter.

3 For further instructions on defining processing rules, see the Trading Networks
administration guide for your release. See “About this Guide” for specific document
titles.

Inbound Message Processing

When a SWIFT message is received by the wm.fin.trp:receiveMessage service, Integration
Server does the following automatically:

B Recognizes the SWIFT message using TN document types.

B Forms a BizDocEnvelope for the SWIFT message.

B Saves the content of the SWIFT message to the Trading Networks database.
|

Submits the SWIFT message to the Trading Networks processing rules engine, which
validates the message. If validation succeeds, the output of the validation includes the
finlData and convertedFinlData variables. Trading Networks then invokes the service
specified in the message TPA InboundProcessingRuleService parameter.

104 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 O Using SWIFT Module SDK Services

B Whatlsthe SWIFT SDK ..o 106
B About the SWIFT Module SDK FEAUIESot et 106

webMethods SWIFT Module Installation and User’s Guide Version 7.1 105

10 Using SWIFT Module SDK Services

What Is the SWIFT SDK

The SWIFT Standards Developer Kit (SDK) is a library of tools that includes automated
updates to XSDs and IS document types as new message standards are released annually.
The library includes MT XML schema definitions (XSDs) and Java services for
performing MT message conversion. The XSDs provide the ability to enforce MT
standards by capitalizing on the benefits of XML, including defining and restricting the
message elements, constraining field data values to SWIFT standards, and automatic
validation of the message format and field data.

SWIFT Module's integrated SDK tools provide several benefits including;:
B The use of one technology for sending and receiving both MT and MX messages.

B XML integration between applications, while using the MT (FIN) format between
partners.

B Fewer errors caused by incorrect FIN syntax.

B Automated annual updates to MT message standard changes.

About the SWIFT Module SDK Features

SWIFT Module integrates the SDK tools, enabling automated update of the XSDs and IS
document types provided with SWIFT Module as new message standards are released.
In addition, SWIFT Module capitalizes on XSD support by providing services to convert
between flat file and XML format, including the flexibility to convert entire messages or
just the block 4 portion of the message.

The following services convert between XML and flat file format and perform message
validation:

B wm.sdk.fin.converter.convertMTBlock4ToOMTXML —This service converts only block 4 of the
MT flat file into XML format.

m wm.sdk.fin.converter:convertMTFlatFileTOMTXML — This service converts the entire MT flat
file into XML format.

B wm.sdk.fin.converter.convertMTXMLblock4ToMTFlatFile—This service converts only block 4 of
the XML file into MT flat file format.

m wm.sdk.fin.converter:convertMTXMLToMTFlatFile — This service converts the entire XML file
into MT flat file format.

B wm.sdk.fin.validator:validateMTXML —This service validates any MT XML message against
the SWIFT SDK MT schema.

To use these services, you must map them in Designer. For more information about using
Designer, see the Designer online help for your release. See “About this Guide” for
specific document titles. SWIFT Module automatically performs file conversion based on
the corresponding XSD or matching IS document type.

106 webMethods SWIFT Module Installation and User’s Guide Version 7.1

10 Using SWIFT Module SDK Services

For information about these services, see “Using SWIFT Module SDK Services” on
page 105.

SWIFT Module SDK Document Formats

As part of the SDK feature, SWIFT Module provides pre-bundled SDK MT and MX XSDs
for the creation of MT and MX IS document types. SWIFT Module also provides services

that automatically create the back-end IS document types and IS schemas from the MT
and MX schemas.

The following IS and XSD documents are included as part of the SDK feature:

B IS document types—The creation services generate a separate IS document type for
each message type, per SDK version (provided as part of the SWIFT FIN component).
The conversion services use these document types when converting an XML message
into flat file format.

B MT and MX XSDs—The following XSDs are pre-bundled within SWIFT Module:

= Block 4 XSDs— A separate XSD to define the business content (block 4) of a
message for each message type, per SDK version. These are used when converting
flat file messages into XML format.

m File Definition XSDs — A separate XSD that defines the header and trailer elements
common to all message types (Blocks 1, 2, 3, and 5). This is used to enforce the
message standard format during conversion of the (entire) file. There is a separate
XSD for each SDK version.

To install SDK document formats
To install the IS document types and IS schemas, complete the following steps:

1 Execute the wm.sdk.docgenerator:createMTISDocFromSchema service to create IS document
types and IS schemas for MT FIN messages.

2 Execute the wm.sdk.docgenerator:createMXISDocFromSchema service to create IS document
types and IS schemas for MX FIN messages.

The corresponding MT and MX IS document types and IS schemas are created in the
wm.sdk.rec folder inside the WmFIN package.

SWIFT Module SDK Folder Organization

The supporting SDK documents and services are organized using the following folder
structure:

B wm.sdk.fin—Contains all the Java services related to the SDK feature.

B wm.sdk.rec.mtxsd.Vyear —Placeholder for the IS document types created from MT XSDs
that correspond to the supported MT XML message version.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 107

10 Using SWIFT Module SDK Services

B wm.sdk.rec.mxxsd—Placeholder for all the IS document types created from MX
(ISO20022) XSDs that correspond to the supported MX XML message version.

B Software AG_directory\ Integration Server \ packages\ WmFIN \ pub \ resources\
SDK_MT_XML_Schema_Library —Contains the pre-bundled MT XSDs.

B Software AG_directory\ Integration Server \ packages\ WmFIN \ pub \ resources\
SDK_MT_XML_Schema_Library —Contains the pre-bundled XSDs.

For information about using SWIFT Module SDK samples, see webMethods SWIFT Module
Samples Guide.

108 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 1 Configuring SWIFT Interfaces

B OV I I ettt 110
B Using WebSphere MQ Adapter to Communicate with SWIFT 110
B Using the CASmf Services to Communicate with SWIFT oo, 112
B Using AFT to Communicate with SWIFT e 116

webMethods SWIFT Module Installation and User’s Guide Version 7.1 109

11 Configuring SWIFT Interfaces

Overview

The SWIFT FIN component of SWIFT Module provides integration support for the
following SWIFT Alliance Access (SAA) interfaces that you can use to send and receive
messages to SWIFT:

B MQHA. If you are connecting to SAA through MQHA, you must install the
webMethods WebSphere MQ Adapter on Integration Server. For more information
about configuring and using the adapter with the SWIFT FIN component, see “Using
WebSphere MQ Adapter to Communicate with SWIFT” on page 110.

B CASmf. If you are connecting to SAA through CASmf, you must install the WmFIN
package that contains the WmCASm(services on Integration Server. For more
information about configuring and using CASmf with the SWIFT FIN component, see
“Using the CASmf Services to Communicate with SWIFT” on page 112.

B AFT. If you are using Automated File Transfer (AFT), you must configure the File
Polling Listener and AFT settings in the message TPA. For more information about
configuring and using the File Polling Listener with the SWIFT FIN component as
well as using File Drop for outbound messages, see “Using AFT to Communicate
with SWIFT” on page 116.

Using WebSphere MQ Adapter to Communicate with SWIFT

The WebSphere MQ Adapter enables Integration Server to exchange information with
other systems through an IBM WebSphere MQ message queue. This capability lets you
route documents or any piece of information from Integration Server to systems that use
WebSphere MQ message queuing as their information interface. The WebSphere MQ
Adapter enables you to connect to SAA through MQHA. For detailed information about
using the WebSphere MQ Adapter, see webMethods WebSphere MQ Adapter Installation and
User’s Guide.

Important! The following procedure assumes that you have already configured your
WebSphere MQ system and SAA to communicate with one another, and have installed
the WebSphere MQ Adapter. For more information about installing the WebSphere MQ
Adapter, see webMethods WebSphere MQ Adapter Installation and User’s Guide.

Configuring the WebSphere MQ Adapter

To configure the WebSphere MQ Adapter for the SWIFT FIN component

1 Configure WebSphere MQ Adapter connections. You will need to configure at least
two connections:

® One connection to send messages to MQ Series.

® One connection to receive messages from MQ Series.

110 webMethods SWIFT Module Installation and User’s Guide Version 7.1

11 Configuring SWIFT Interfaces

For information about configuring WebSphere MQ Adapter connections,
seewebMethods WebSphere MQ Adapter Installation and User’s Guide.

2 Configure settings to deliver outbound messages from the SWIFT FIN component to
SWIFT via WebSphere MQ Adapter.

a Configure a WebSphere MQ Adapter Put service to deliver SWIFT messages to a
MQ Series queue. Use the connection that you configured in step 1 for sending
messages to MQ Series.

For information about configuring the WebSphere MQ Adapter Put service, see
webMethods WebSphere MQ Adapter Installation and User’s Guide.

b Create a flow service or Java service that invokes the Put service you just
configured in step a.

When you create the service:

® The input variables must include the variable msgBody with data type byte][]
(or Object for a flow service).

m Before invoking the Put service that you configured in step a, the logic of the
service must map the data in the msgBody input variable to the input of the Put
service; that is, map the value to the putServicelnput/msgBody variable of the
generated Put adapter service.

® The logic must invoke the Put service that you configured in step 2a.
¢ Update the TPA for SWIFT messages to identify the correct method to deliver
outbound SWIFT messages. To do so, update the following in the TPA:

In this section of

the TPA... Set this parameter... To...
FINProcessInfo Transport MQ
MQSeriesInfo putMessageHandlerService The name of the service that

you created in step 2b.

For more information about TPAs, see Chapter 8, “Customizing Trading Partner
Agreements”.

3 Define configurations for receiving inbound messages from SWIFT via
WebSphere MQ Adapter.

a Configure WebSphere MQ Adapter listeners and listener notifications. When
configuring the listener, identify the connection that receives messages from MQ
Series that you configured in step 1.

When you create a listener notification, you must specify a service to invoke when
WebSphere MQ Adapter retrieves a message from MQ Series. For more
information about this service, see the next step.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 111

11 Configuring SWIFT Interfaces

For information about configuring the WebSphere MQ Adapter listeners and
listener notifications, see webMethods WebSphere MQ Adapter Installation and User’s
Guide.

b Create a flow service or Java service that is invoked when the WebSphere MQ
Adapter retrieves a message from MQ Series. The last action that the flow or Java
service takes must be to invoke the wm.fin.transport. MQSeries:getMQSeriesListenerService
service. The service getListenerService processes the received FIN message. For more
information about this service, see wm.fin.transport. MQSeries:getMQSeriesListenerService.

How the service is invoked depends upon the type of listener notification you
created in step a:

m If you create an asynchronous listener notification, you must create a trigger
that subscribes to the notification. When you create the trigger, set it up to
invoke this service.

m If you create a synchronous listener notification, you must specify the name of
this service when you configure the synchronous listener notification.

Using the CASmf Services to Communicate with SWIFT

The SWIFT Module WmFIN package contains the CASmf services that enable Integration
Server to send and receive messages through the CASmf interface. The WmFIN package
also contains services that enable you to connect to SAA, and to route messages from
Integration Server to SAA over the CASmf interface.

webMethods CASmf Services

The webMethods CASm(f services are part of the WmFIN package and the following
diagram illustrates how the webMethods CASmf services interact with the other
webMethods product suite components.

112 webMethods SWIFT Module Installation and User’s Guide Version 7.1

11 Configuring SWIFT Interfaces

The following table describes the components that interact with the webMethods CASmf

services.

Component Description

WmPFIN package The package that contains the webMethods CASmf services.

WmCASMf The service that transfers SWIFT FIN messages to and from the

service SAA system using CASmf.

CASmf Client The client enables the CASmf services to interface with the CASmf
server.

CASmf Server The server enables communication between the CASmf client and
SAA.

SAA SWIFT software configured to access the SWIFT Transport
Network (STN), SWIFT's original network accessed using x.25
transport technologies.

SWIFT Transport The existing SWIFT interface, a computer system provided and

Network (STN) operated by the user, which enables communication with the

SWIFT network.

Configuring the CASmf Interface

Important! The following procedure assumes that you have already configured your
CASmf server and SAA to communicate with one another. For more information, see
your CASmf server and SWIFT documentation.

The configuration settings for the CASmf services are stored in the CASmf configuration
file (wmcasmf.cnf). This file resides in thelntegration Server_directory \ packages\
WmFIN\ config directory and contains parameters that determine how the services
operate. Edit the file directly with a text editor.

To configure the CASmf Interface for SWIFT Module

1 Install a CASmf client on the same machine as Integration Server. For more
information, see your CASmf documentation.

Important! Start the SWIFT CASmf Client before starting Integration Server.

2 Configure the CASmf services to work with SWIFT Module:

a Open the Integration Server_directory\ packages\ WmFIN \ config\ wmcasmf.cnf
file in a text editor.

b Edit the following properties as needed:

webMethods SWIFT Module Installation and User’s Guide Version 7.1 113

11 Configuring SWIFT Interfaces

Property

Description

wm.casmf.send.mapid

The sending and receiving maplIDs that you have
defined for SAA. The default value is CASmf Input.

wm.casmf.receive.mapid

The mapIDs must match exactly the two 1_mapid
fields in the CASmf client dmapid.dat file. Usually,
this file is located in the directory where the CASmf
client is installed: $CASmflInstallationFolder\ dat. You
can also locate this file using the folder listed in your
DATTOP environment variable. The default value is
CASmfQutput.

wm.casmf.send.message.folder

The default folder in which all outbound SWIFT FIN
messages are queued before being sent to SWIFT via
the CASm(f Interface: Integration Server_directory\
packages\ WmFIN\ config\ outboundMessages. You
can change this location if desired.

wm.casmf.authentication.type

The type of authentication that you want the
webMethods CASmf services to perform with SAA.
Specify one of the following:

B AUTH_ACCESS—Performs session authentication.
B AUTH_DATA—Performs data authentication.

B AUTH_BOTH-Performs session and data
authentication.

B AUTH_NONE—Performs no authentication.

wm.casmf.authentication.send
Key

wm.casmf.authentication.recei
veKey

The keys used for authentication of the session:

B sendKey—The receive key that you defined for
the CASmf input message partner on SAA.

B receiveKey—The send key that you defined for
the CASmf output message partner on SAA.

Important! Reverse the keys appropriately when
defining this property. For example, use the value
you defined for the sendKey in SAA for the
wm.casmf.authentication.receiveKey property.

114

webMethods SWIFT Module Installation and User’s Guide Version 7.1

11 Configuring SWIFT Interfaces

Property

Description

wm.casmf.authentication.local
Send Key

wm.casmf.authentication.local
ReceiveKey

The keys used for local authentication of the data
sent and received over a CASmf session on SAA:

B JocalSendKey—The receive key that you defined
for the CASmf input message partner.

W localReceiveKey—The send key that you defined
for the CASmf output message partner.

Important! Reverse the keys appropriately when
defining this property. For example, use the value
you defined for the localSendKey in SAA for the
wm.casmf.authentication.local.ReceiveKey property.

wm.casmf.receive.timeout

The number of seconds that CASmf services should
maintain an active connection with SAA for
receiving messages. If no messages are received
within the specified time, the connection is closed.
The default is 300 seconds.

For example, if the timeout value is 300 seconds and
there are 10 messages that take 20 seconds to
receive, the connection remains open for the 20
seconds it takes to receive the 10 messages, then
remain idles for the next 280 seconds before being
closed.

Save and close the file.

3 Inthe TPA for each type of SWIFT message that you will send and receive using

CASmf, set the following field:

Set this field to... To...

Transport CASmf

For more information about TPAs, see “Modifying the TPA” on page 94.

4 In the Integration Server Administrator, create a scheduling service to run the
wm.casmf.trp:casmfSendReceiveSchedule service at intervals:

a In the Server menuof the Navigation panel, click Scheduler.

b Click Create a scheduled task.

¢ To set the fields in the Service Information section, follow the instructions in
Integration Server administration guide for your release. See “About this Guide”

for specific document titles.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

115

11 Configuring SWIFT Interfaces

d Inthe Schedule Type and Details section, under Repeating Tasks With a Simple
Interval, set the fields as follows:

Select Repeating.

In the Start Date and Start Time fields, enter the date and time of the first
execution of the service. These fields are optional.

In the End Date and End Time fields, enter the date and time of the last execution
of the service. These fields are optional.

Select the Repeat after completion check box.

In the Interval field, Software AG recommends that you set this service to run
at intervals of at least 15-20 minutes.

e Click Save Tasks.

For more information about this service, see wm.casmf.trp:casmfSendReceiveSchedule.

Using AFT to Communicate with SWIFT

Important! To use Automated File Transfer (AFT), you must have the WmFlatFile package
installed. This package is installed by default with Integration Server.

AFT enables Integration Server to exchange information with other systems. If you are
using AFT to receive inbound SWIFT FIN messages through the File Polling Listener, and
File Drop capabilities to send outbound SWIFT FIN messages, you must properly
configure the File Polling Listener and the message TPA.

Configuring AFT for Inbound Messages

To configure the webMethods File Polling Listener for SWIFT Module

1 Inthe Integration Server Administrator, click Security > Ports > Add Port.

2 Select webMethods/FilePolling and click Submit.

3 Configure the File Polling Listener's general fields as described in the “Configuring
Ports” section of the “Configuring the Server” chapter of the Integration Server
administration guide for your release. See “About this Guide” for specific document

titles.
4 Define the following fields so that the File Polling Listener can properly handle
SWIFT FIN messages.
Set this field... To...
Content Type application/x-wmflatfile

116

webMethods SWIFT Module Installation and User’s Guide Version 7.1

11 Configuring SWIFT Interfaces

Set this field... To...

Folder location The fully qualified path of the folder from which SAA will
send SWIFT FIN messages. The folder must be accessible to
both SAA and Integration Server.

Processing Service wm.fin.transport. AFT:processincomingFile

Configuring AFT for Outbound Messages

Complete the following procedure to configure AFT using File Drop capabilities to send
outbound SWIFT FIN messages using SWIFT Module.

To configure File Drop for SWIFT Module

1 Map a network directory in which you want to drop files for SAA. This can be any
directory in Integration Server.

2 In the TPA for the SWIFT message, set the following parameters:

Set this field... To...
Transport AFT
Folder location The fully qualified path of the folder in which Integration

Server will drop SWIFT FIN messages. The folder must be
accessible to both SAA and Integration Server.

FileExtension .inp

3 For more information about TPAs, see “Modifying the TPA” on page 94.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 117

11 Configuring SWIFT Interfaces

118 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 2 Configuring Notifications for Messages in XML v2

Format
B OV I BI .oo 120
B Configuring SWIFT Module to Handle Notificationst 120

webMethods SWIFT Module Installation and User’s Guide Version 7.1 119

12 Configuring Notifications for Messages in XML v2 Format

Overview

SWIFT Module handles all levels of notification that SWIFT Alliance Access (SAA) sends
in response to requests from SWIFT Module:

B Information notification: When SAA receives MT messages from SWIFT Module, SAA
validates the structure and the security signature of the message against SWIFT
standards. If the message fails validation, SAA routes the message to a specific
routing point and sends an information notification and message status to SWIFT

Module.

B Transmission notification: SWIFT Central Services validates messages for FIN, InterAct,
and FileAct services, and returns either a Positive (ACK) or Negative (NAK)
acknowledgement. If SWIFT accepts the message, it returns ACK. If the message
validation fails, SWIFT rejects the message and returns NAK. SAA maps these
acknowledgements into transmission notifications and sends them to SWIFT Module.

® Delivery notification: When the message is delivered to the receiver, SWIFT Central
Services sends a Delivery Notification (DeIN) acknowledgement. SAA maps DeIN
into a delivery report or delivery notification and sends it to SWIFT Module.

SWIFT Module handles notifications using site-specific processing, configured through
Trading Networks processing rules. SWIFT Module provides you with the TN
documents required to recognize the notification messages. Trading Networks saves
incoming notifications and associates them with the original messages using the
corresponding processing rule. You can see related messages by viewing the documents
in Trading Networks.

Important! SWIFT Module handles notifications only for messages exchanged over SAA in
XML v2 format.

Configuring SWIFT Module to Handle Notifications

Step 1. Import Trading Networks Information for Notifications

To enable SWIFT Module to handle notifications received from SAA, import the
following Trading Networks assets:

120 webMethods SWIFT Module Installation and User’s Guide Version 7.1

12 Configuring Notifications for Messages in XML v2 Format

Trading Networks

Asset Attribute Description
Processing Rules HandleDeliveryNoti Processes delivery notifications from SAA
fications and relates them to the original document
using the 108: tag of the message.
Related SWIFT Reconciles all notifications from SAA and
documents relates notifications to the original
document using the SenderReference
attribute.
Document Format Identifies the format of the message (MT,
Attributes MX, or any XML type).
SenderReference Extracted from the outbound document

(being sent to) SAA and uniquely
identifies any document sent to SAA.

ReconciliationInfo Used to reconcile the MX Delivery
Notification message to the corresponding
Transmission report. (This attribute is
extracted from the inbound Delivery
Notification.)

Document Types DeliveryNotification —Corresponds to the delivery notification
sent by SWIFT to SWIFT Module for
successful delivery of a message to a
counterparty:.

To import Trading Networks information for handling notifications

B Using the file located in the Integration Server_directory\ packages\ WmFIN
\ config\xmlv2\ xmlv2TNItems.dat directory, import Trading Networks assets using
the instructions described in the Trading Networks administration guide for your
release. See “About this Guide” for specific document titles.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 121

12 Configuring Notifications for Messages in XML v2 Format

Step 2: Configure SWIFT Module to Handle Notifications

To configure SWIFT Module to handle notifications

1 Configure routing rules in SAA using the Routing Application to send different
notifications to specific end points (AFT or MQHA). For more information about
configuring routing rules in SAA, see SWIFT Alliance Access Administration Guide.

2 Configure the routing on SAA to send notifications to:

m AFT - Create a new service to process notifications and submit them to Trading
Networks for further processing, or modify the sample service
wm.xmlv2:recieveFromAFT from the SWIFT Module samples. For more information
about the SWIFT Module sample services, see webMethods SWIFT Module Samples
Guide.

m MQHA - Create a listener and notification for this connection:

® Create a listener to wait for a notification document and a trigger that
subscribes to the notification document. The notification document is
published when a message is put into the MQHA queue by SAA.

= Create a new service to handle notifications or modify the sample service,
wm.xmlv2:receiveFromMQ. This service is called from the above trigger which
subscribes to the Notification document.

Sample services for the connection, listener, notification, trigger, and receive
services are available in the SWIFT Module samples. For more information about
the SWIFT Module sample services, see webMethods SWIFT Module Samples Guide.

3 Configure the connection details for SAA as described in:
m For AFT, see “Using AFT to Communicate with SWIFT” on page 116.

m For MQHA, see “Using WebSphere MQ Adapter to Communicate with SWIFT”
on page 110.

Step 3: View Notifications and Related Messages

You can view the different types of notifications and the messages to which they relate
using the Trading Networks pages in My webMethods.

Search for the notification you want to view in Trading Networks by following the
instructions described in the Trading Networks administration guide for your release.
See “About this Guide” for specific document titles.

Notification Details Displayed in the Transaction Details Panel

In the Transaction Details panel there are several tabs that display information about the
notifications. The following table describes the most important details for the different
types of notifications that you can find on the Activity Log and Content tabs. For

122 webMethods SWIFT Module Installation and User’s Guide Version 7.1

12 Configuring Notifications for Messages in XML v2 Format

information about all tabs in the Transaction Details panel, see the Trading Networks
administration guide for your release. See “About this Guide” for specific document

titles..
Tab Notification Details
Activity Log The Brief Message column contains the Document ID of
the original message or TN document to which the
notification or report is related:
Delivery The TN document related to this notification, for
Notification example:
Related to 5306d600488qm9n80000040ov (Delivery
Notification).
Delivery ID of the message related to this report, for example:
Report .)
Related to 5306d600488qm65j000004nm (Delivery
Report).
History ID of the message related to this report, for example:
Report .
ReTated to 50k2ga0049dn110r000000cs(History
Report).
Transmission ID of the message related to this report, for example:
Report
Related to 50k2ga0049dn110r000000cs
(NetworkAcked) .
Content Details displays the contents of the selected item:
Delivery The delivery notification contents of the bizdoc, which
Notification is in either XML or MT format:

® For xm1Data—The Data PDU content in XML
format. The body tag contains the MT or MX
message data:

= MT message—Base 64 encoded format.
® MX message—The delivery information.

B For finMsg—The MT content. The 108: tag in the
decoded MT message contains the SenderReference
of the original document, for example:
{175:1049}{106:090624PTSAUSAQOAXXX0077000422}{1

08:MT910586328}{175:1059}{107:090624PTSAUSAOAX
XX0078000882}

webMethods SWIFT Module Installation and User’s Guide Version 7.1 123

12 Configuring Notifications for Messages in XML v2 Format

Tab Notification Details
Delivery The delivery report for the selected item:
R t
epor B For xmlData—The Data PDU in XML format.

B For SAA—The SAA content. The 108: tag contains
the SenderReference of the original document, for
example:
{175:1049}{106:090624PTSAUSAQAXXX0077000419}{1
08:MT210244895}{175:1049}{107:090624PTSAUSAOAX
XX0077000872}

History For xm1Data, the actual Data PDU content of the history
Report report in XML format.
Transmission The content of the transmission report:
R t .
epor B For xmiData—The Data PDU in XML format.
B For SAA—The SAA content. The 451: tag provides

the processing status of the original document by
SWIFT Network, for example:

{1:F21PTSAUSAOAXXX0090000441}{4:{177:090708112
43{451:0}{108:MT199704775}}

The value of the tag in the example is 0, indicating
that the original message has been successfully

acknowledged by SWIFT Network.

For examples of the Data PDU content of the different types of notifications, see
“Examples of Data PDU Content of Documents” on page 313.

124

webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 3 Using SAA to Exchange XML v2 Wrapped MT and MX

Messages
B OV I BI .oo 126
B Exchanging MT Messages in XMLV2 Format, 126
B Exchanging MX Messages through SAA 134
B Validating MX Messages Conform to SWIFT Standards 139

webMethods SWIFT Module Installation and User’s Guide Version 7.1

125

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Overview

SWIFT Module supports the exchange of MX and MT messages over the SWIFT Network
through SWIFT Alliance Access (SAA). SWIFT Module, also supports FileAct and
InterAct messaging services for transporting MX messages. MT and MX messages
exchanged through SAA are wrapped in XML v2 data format. The root tag for this data
formatis Data PDU. The body tag of the Data PDU may contain an MX message or a base
64-encoded MT message.

SWIFT Module also handles inbound messages from SAA. You can configure custom
services to be triggered for these messages.

SWIFT Module validates MX messages against the SWIFT standards.

Exchanging MT Messages in XMLv2 Format

To exchange MT messages using XML v2 format, you must do the following:
B “Step 1: Configure Trading Partners for Message Exchange” on page 126
B “Step 2: Create Trading Networks Items” on page 127

B “Step 3: Send the MT Message to SAA” on page 133
|

“Step 4: Reconcile the Notification from SWIFT with the Original MT Message” on
page 133

Step 1: Configure Trading Partners for Message Exchange

To exchange XML v2 wrapped MT messages over SAA, configure trading partner
profiles. For information about how to configure trading partner profiles, see “About
Trading Partner Profiles” on page 80.

To view trading partner information

1 Follow the instructions for viewing Trading partner information in Trading Networks
as described in the Trading Networks administration guide for your release. See
“About this Guide” for specific document titles.

2 In the Partner Details, you can view the following information that Trading Networks
uses to identify a trading partner for an MT message exchange:

Field Description

Corporation Name Name of the partner's corporation, for example, Software AG.

Partner Type This specifies that the corporation uses Trading Networks.
The default value is webMethods Trading Networks.

126 webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Field Description

External ID Identifies the partner as a sender or receiver of the MT
message.The default value is BIC, for example,
PTSAUSAOXXX.

3 For information about the other fields in the Partner Details panel of the Partner
Profile page, see the Trading Networks administration guide for your release. See
“About this Guide” for specific document titles.

Step 2: Create Trading Networks ltems

In Designer, run the wm.xmlv2.dev:createSWIFTItems service to create the following Trading
Networks assets for an MT message: a TN document type, a processing rule, and a TPA.
The following table lists the parameters that you should define for MT messages:

Parameter Value

msgTypeName The MT message type for which a TN document type must be
created, for example, fin.535.

format MT

finFormat Required. Defines the format of the IS document that is

generated for the MT message type. The default value is
TAG_BIZNAME.

version Required. The version of the SWIFT specification, for example,
nov10.
subfieldFlag Required. Specifies whether the fields generated in the IS

document type are parsed to the subfield level. The default
value is true.

createProcessingRule Creates a default processing rule for the specified document
type. The default is false.

createTPA Creates a Trading Networks TPA for the message that specifies
variables used in WmFIN for processing and validation. The
default is true.

createDocType Creates and inserts a TN document type for the message. The
TN document type is used to recognize an incoming message.
The default is true.

The parameters finFormat, version, and subFieldFlag are required for an MT message type
because the service uses these to generate an IS document type for the corresponding
message type (an MT message in this case). This service internally invokes
wm.fin.dev:importFINItems to import the relevant DFDs and SWIFT message templates
required for the validation and parsing of the MT message. For more information, see
wm.xmlv2.dev:createSWIFTItems.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 127

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Viewing Trading Networks Assets for an MT Message

You can view the Trading Networks assets that wm.xmlv2.dev:createSWIFTItems generates for
an MT message in Trading Networks. For more information about searching for and
viewing items in Trading Networks, follow the instructions described in the Trading
Networks administration guide for your release. See “About this Guide” for specific
document titles.

About TN Document Types

TN document types are created when the createDocType parameter in the
wm.xmlv2.dev:createSWIFTItems service is set to true. You can view the following parameters
for TN document types for MT messages:

B |dentification Information. The information that Trading Networks uses to determine
whether a document matches a defined TN XML document type.

B Extraction Information. The attributes that you want Trading Networks to extract from
the XML document. The SenderID and ReceiverID attributes should be selected from
the Data PDU XML document for use in processing rules, transaction analysis, and
process management.

To view details for TN document types for MT messages

1 Follow the instructions for viewing TN document types as described in the Trading
Networks administration guide for your release. See “About this Guide” for specific
document titles.

2 From the Document Types list, click the MT message document type that you want to
view (for example, fin.535).

3 Inthe Document Type Details screen, on the Identify tab, the following identification
information is available for the MT message TN document type:

Field Description

Name The name of the document type, for example, fin.535.

Description Indicates that the XML format of the document corresponds to
the Data PDU XML format (for example, DataPDU for doc type
= fin.535).

Root Tag The root tag that identifies the message as a Data PDU XML

document when it is submitted to Trading Networks. The
default value is DataPDU.

128 webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Field Description

Identifying Query Uniquely identifies the MT message, indicating the location of
the MT message element in the Data PDU XML document. You
can specify which value Trading Networks evaluates to
determine if it matches the TN XML document type.

For example, if the Identifying Query is:
:DataPDU/:Header/*:Message/ *:Messageldentifier, and you
define the value as fin.535, Trading Networks does the
following for any fin.535 document submitted:

B Runs the above query against the XML structure of the
document and extracts the value at the specified location.

B Identifies the document as a fin.535 message.
B Continues with the next action defined for this message type.

To view or edit Identifying Queries, follow the instructions
described in the Trading Networks administration guide for
your release. See “About this Guide” for specific document titles.

4 To extract information about the SenderID and ReceiverID attributes, do the following;:

a Follow the instructions for extracting information about attributes as described in
the Trading Networks administration guide for your release. See “About this
Guide” for specific document titles.

b From the Attributes to Extract list, select Sender1D or ReceiverID to edit.

¢ On the Edit Attribute screen, you can edit or view the following details:

Field Description
Name The name of the attribute, for example, SenderID or ReceiverID
Query Indicates to Trading Networks how to extract the attribute for the

Data PDU XML document type, for example:

B SenderID Query:
/*:DataPDULO]/*:Header[0]/*:*/*:Sender[0]/*:*/*:X1[0]

B ReceiverID Query:
/*:DataPDULO0]/*:Header[0]/*:*/*:Receiver[0]/*:*/*:X1[0]

Built-in Specifies the external ID type associated with the information in
Transformation ~ the document for the sender or receiver. For MT messages the
external ID type for the sender and the receiver is BIC.

About Processing Rules

Processing rules are created when the createProcessingRule parameter in the
wm.xmlv2.dev:createSWIFTItems service is set to true.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 129

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

To view details for processing rules for MT messages

1

Follow the instructions for viewing processing rules as described in theTrading
Networks administration guide for your release. See “About this Guide” for specific

document titles.

From the Processing Rules list, click the MT message document type that you want to
view, for example, fin.535.

On the Criteria tab in the Processing Rule Details screen, you can view the processing
rule criteria. Trading Networks uses these parameters to identify the documents that
trigger the rule execution.

Field Description

Name The name of the processing rule, for example, fin.535.
Sender The sender. The default value is Any.

Receiver The receiver. The default value is Any.

Document Type TN document type specified for the document. The default

value is Selected. For example, if the TN document type is
fin.535, the processing rule is triggered only for fin.535
messages.

User Status

For Trading Networks to determine which processing rule to
invoke, the processing rule must have this additional User Status
value for outgoing documents. The default value is
AwaitingDelivery.

This value is very important to the processing rule. All MT/MX
messages are submitted to Trading Networks before they are
sent to SAA from SWIFT Module. Trading Networks uses the
information in the TPA to determine whether to send a
document to SAA, and invokes the corresponding processing
rule accordingly. The processing rule must have this additional
User Status value. Messages received from SAA are processed
similarly.

Recognition
Errors

Indicates the possibility that the document has errors. The
default value is May have errors.

4 On the Action tab in the Processing Rule Details screen, you can view the actions in
the processing rule that Trading Networks performs to process the document:

The action selected for the MT message processing rule is Execute a service.

The Execute A Service panel shows the name of the service that Trading Networks
executes. The default service is wm.xmlv2.process:outbound, which sends the
document to SAA based on the TPA information. Trading Networks invokes the
service synchronously.

130

webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

About Trading Partner Agreements

To view details for TPAs for MT messages

1 Follow the instructions for viewing Agreements as described in the Trading
Networks administration guide for your release. See “About this Guide” for specific
document titles.

2 From the Agreements list, click the MT message document type that you want to view
(for example, fin.535).

3 Inthe Agreement Details screen, view the following important details for the default
TPA, generated by the wm.xmlv2.dev.createSWIFTItemsservice when the createTPA
parameter in this service is set to true:

Field Description

Sender Specifies the partner that has the sending role in the TPA.The
default value is Unknown.

Receiver Specifies the partner that has the receiving role in the TPA. The
default value is Unknown.

Agreement ID Uniquely identifies the type of agreement between two
partners, for example, fin.535.

IS documenttype Specifies the data that you define in the TPA for processing the
MT message document type. The default value is
wm.xmlv2.doc:XMLV2Params. This IS document contains three main
sections:

webMethods SWIFT Module Installation and User’s Guide Version 7.1 131

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Field Description

IS Doc Section Description

ProcessInfo This section consists of the following
parameters:

B Transport. The transport to use for sending
the Data PDU document to SAA. Select MQ
or AFT.

B MTProcessInfo. Supports backward
compatibility for MT messaging in a
SWIFT FIN 6.1 TPA. For more information,
see webMethods SWIFT FIN Module
Installation and User’s Guide 6.1.

B MXProcessInfo. The validation to perform
on the MX message:

® Validate. Validate the MX message.

® SchemaValidation. Perform a schema
validation.

m NonSchemaValidation. Perform a non-
schema (extended) validation.

For details about these parameters, see
“Process Information Section of the
XMLv2 Parameters Document” on
page 257.

B ns:Message. Contains SWIFT specific
information required for sending the
message to SAA. For more information,
see sample service,
wm.xmlv2.MT.maps:mapDataPDU.

MQSeriesInfo For more information, see “Modifying the
AFT TPA” on page 94.

Description Indicates that the TPA is for an MT message document type, for
example, TPA for fin.535.

For information about the other fields in the Agreement Details screen of the TPA, see
the Trading Networks administration guide for your release. See “About this Guide”
for specific document titles.

132

webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Step 3: Send the MT Message to SAA

To send the MT message to SAA, create your own custom service. Use the sample service,
wm.xmlv2.MT:sampleMTExchangeUseTPA located in the SWIFT Module sample package as an
example.

To view detailed information for the MT message that SWIFT Module submits to Trading Networks

1 Follow the instructions to view Transactions as described in the Trading Networks
administration guide for your release. See “About this Guide” for specific document
titles.

2 In the Transaction Details panel, view detailed information for the MT message that
SWIFT Module submits to Trading Networks.

= The Attributes tab provides details about the MT message. The attribute User
Status is very important. When the value is “Waiting SWIFT Network,”, it indicates
that Trading Networks has successfully submitted the message to SAA and is
waiting for an acknowledgement from SWIFT Network. If a problem occurs while
sending the document, the User Status is updated to SentFailed.

® The Content tab provides the following information:

® The Data PDU content of the MT message. For an example of the Data PDU
content, see “Examples of Data PDU Content of Documents” on page 313.

® The decoded MT Data of the MT message.

For information about how to view detailed information for the MT message, see
“Step 3: View Notifications and Related Messages” on page 122.

Step 4: Reconcile the Notification from SWIFT with the Original MT
Message

After SWIFT Module submits the MT message to SAA, the Trading Networks bizdoc
waits for the transmission notification from SWIFT. When the MT message bizdoc
receives the transmission notification from SWIFT, SWIFT Module reconciles the
notification with the original MT message.

The complete processing of an MT message involves reconciliation of all types of
notification documents (history report, delivery report, delivery notification and
transmission report) with the original document.

For information about how to handle notifications, seeChapter 12, “Configuring
Notifications for Messages in XML v2 Format”.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 133

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Exchanging MX Messages through SAA

SWIFT Module supports the exchange of MX messages through SAA using FileAct and
InterAct messaging services. To send MX messages through SAA, you must do the
following:

B “Step 1: Configure Trading Partners for Message Exchange” on page 134
“Step 2: Create Trading Networks Assets” on page 134

“Step 3: Create IS Schema and IS Document Type” on page 137

“Step 4: Send the MX Message to SAA” on page 138

“Step 5: Receive an MX Document from SAA” on page 139

Step 1: Configure Trading Partners for Message Exchange

You must configure trading partner profiles to exchange MX messages over SAA. For
information about configuring trading partner profiles, see .

Step 2: Create Trading Networks Assets

To create Trading Networks assets for MX message types

1 In Designer, run the wm.xmlv2.dev:createSWIFTltems service to create a TN document
type, processing rule, and TPA for MX messages in Trading Networks.

2 Define the following parameters:

Parameter Value

msgTypeName Specify the MX message type for which a TN document
type must be created, for example, camt.029.001.01.

format MX

createProcessingRule Creates a default processing rule for the specified
document type. The default is false.

createTPA Creates a Trading Networks TPA for this message that
specifies the variables used in WmFIN for processing and
validation. The default is true.

createDocType Creates and inserts a TN document type for this message.
The default is true.

Important! The finFormat, version, and subfieldFlag fields are not required for an MX
message. Use the default values for these fields.

134 webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

For more information, see the wm.xmlv2.dev:create SWIFTItems service.

Viewing or Modifying Trading Networks Assets for an MX Message

To view or modify Trading Networks assets for an MX Message

1 To view or modify the Trading Networks assets that the wm.xmlv2.dev:createSWIFTItems
service created for an MX message, follow the instructions described in the Trading
Networks administration guide for your release. See “About this Guide” for specific
document titles.

2 Click the Identify tab on the Document Type Details screen. The following table
highlights the most important details for the MX TN document type:

Field Description

Name The name of the document type, for example,
camt.029.001.01.

Description Indicates that the document is in an XML format that
corresponds to the Data PDU XML, for example,
camt.029.001.01.

Root Tag The root tag that serves to identify the message as a Data PDU
XML document when it is submitted to Trading Networks.
The default value is DataPDU.

Identifying Query Uniquely identifies the MX message, indicating the location of
the MX message element in the Data PDU XML document.
You can specify which value Trading Networks evaluates to
determine if it matches the TN XML document type.

For example, if the Identifying Query is
:DataPDU/:Header/*:Message/*:Messageldentifier, and
you define the value as camt.029.001.01, Trading Networks
does the following for any camt.029.001.01 document
submitted to it:

B Runs the above query against the XML structure of the
document and extracts the value at the specified location.

B Identifies the document as a camt.029.001.01 message.

B Continues with the next action defined for this message
type.

To view or edit Identifying Queries, follow the instructions
described in the Trading Networks administration guide for
your release. See “About this Guide” for specific document
titles.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 135

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

3 Click the Edit Attribute screen to view or edit the following attributes:

Field Description
Name The name of the attribute. You can extract the following
attributes for an MX message:
B SenderID
B ReceiverID
B SenderReference
B Format
B ReconciliationInfo
Query Instructs Trading Networks how to extract the attribute for the
Data PDU XML document type. For example:
B SenderID:
/*:DataPDULO]/*:Header[0]/*:*/*:Sender[0]/*:*/*:X1[0]
B ReceiverID:
/*:DataPDUL0]/*:Header[01/*:*/*:Receiver[0]/*:*/*:X1[0]
B SenderReference:
/*:DataPDU[0]/*:Header[0]/*:*/*:SenderReference[0]
B Format:
/*:DataPDUL0]/*:Header[01/*:*/*:Format[0]
B ReconciliationInfo:
/*:DataPDUL0]/*:Header[0]/*:*/*:ReconciliationInfol0]
Built-in Specifies the external ID type associated with the information in
Transformation the document for the sender or receiver. For MX messages the

external ID type for the sender and the receiver is BIC.

Note: To extract attributes in the TN document type, follow step 4 in the “To view
details for TN document types for MT messages” procedure.

4 On the Processing Rule Details screen:

® Click the Criteria tab, to view the following processing rule criteria that Trading
Networks uses to identify the documents:

136

webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Field Description

Name The name of the processing rule, for example,
camt.029.001.01.

Sender The sender. The default value is Any.

Receiver The receiver. The default value is Any.

Document Type The default value is Selected, and a TN document type is

specified for the document. For example, if the TN document
type is camt.029.001.01, the processing rule is triggered only
for the routed camt.029.001.01 message.

User Status For Trading Networks to determine which processing rule to
invoke, the processing rule must define this additional User
Status value for outgoing documents. The default value is
AwaitingDelivery.

This value is very important to the processing rule. All
MT/MX messages are submitted to Trading Networks before
they are sent to SAA from SWIFT Module. Trading Networks
uses the information in the TPA to determine whether to
send a document to SAA, and invokes the corresponding
processing rule accordingly. The processing rule must have
this additional User Status value. Messages received from
SAA are processed similarly.

Recognition Errors Indicates whether to specify if the document has errors. The
default value is May have errors

m Click the Action tab to view the processing rule action details. (These details are
the same as for an MT message. For information, see step 4 in the “To view details
for processing rules for MT messages” procedure.)

5 To view the MX TPA, follow the procedure described in “To view details for TPAs for
MT messages.” The details are the same as in the MT TPA, essage, except for the
Agreement ID, which shows the type of message that the TPA represents (MX message).
For example, the Agreement ID for an MX message may have the value
camt.029.001.01.

Step 3: Create IS Schema and IS Document Type

The MX message structure is defined by an XML schema. You must create an XML
schema in Integration Server that corresponds to the MX message structure to populate
the data values in the pre-defined placeholders for that particular MX message type.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 137

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

To create an IS schema and IS document type for an MX message type
1 Start Designer.

2 Navigate to the package and folder of the MX message type for which you want to
create an IS document type (for example, camt.029.001.01).

3 Follow the instructions for creating document types as described in the Trading
Networks administration guide for your release. See “About this Guide” for specific
document titles.

4 In the Name field in the New Document Type dialog box, type a name for the IS
document type using any combination of letters, numbers, and/or the underscore
character (for example, camt_029_001_01) and click Next.

5 Under Select a source, select XML Schema and click Next.

6 In the Enter the URL or select a local file box and browse to the location of the XML
schema to be used for creating this message type (for example,
Integration Server_directory/packages/WmFIN/config/schemas/camt_029_001_01.xsd).
Click Next.

7 In the New Document Type dialog box do the following;:

a Under Select the root node, specify the root element of the document (for example,
Document#urn:iso:std:1s0:20022:tech:xsd:camt.029.001.01).

b Under Select schema type processing, select Expand complex types inline. Designer
processes complex types by expanding them inline in the editor.

¢ Click Finish.

8 Designer generates the IS document type and IS schema and saves the IS document
type on Integration Server. You can view the IS document type in the editor and the IS
schema in the Navigation panel. For information about creating IS document types
and IS document schemas, see the Designer online help for your release. See “About
this Guide” for specific document titles.

9 The WmSWIFTSamples package contains IS schemas and IS document types already
created for camt.029.001.01 and camt.007.002.01 messages in the folders
wm.xmlv2.doc.camt_029_001_01 and wm.xmlv2.doc.camt_029_001_01, respectively.
For information about the samples package, see webMethods SWIFT Module Samples
Guide.

Step 4: Send the MX Message to SAA

SWIFT Module supports the use of FileAct and InterAct messaging services with SAA. To
send the MX message to SAA, create and run your own service in Designer. You can use
the sample wm.xmlv2.MX:sample_camt029_001_01 service and
wm.xmlv2.fileact.camt007_002_01:sendFile as examples. Follow the instructions for “Viewing
Transactions” as described in theTrading Networks administration guide for your
release. See “About this Guide” for specific document titles.

138 webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

In the Transaction Details panel, you can view detailed information for the MX message
that SWIFT Module submits to Trading Networks:

B The Attributes tab provides details about the MX message bizdoc. The User Status
attribute provides important information about the status of the message
transmission to SAA. The status, Waiting SWIFT Network, shows that Trading
Networks has submitted the MT message to SAA successfully, and is waiting for an
acknowledgment from the SWIFT Network. Trading Networks updates the status to
reflect the state of the message transmission. If a problem occurs while sending the
document, the User Status is updated to SentFailed.

B The Content tab provides the following information:
® The Data PDU content of the MX message bizdoc
®m The MX Header
® The MX Document

For examples of the Data PDU content, the MX Header, and the MX Document, see
“Examples of Data PDU Content of Documents” on page 313.

B The Activity Log tab shows the activity log entry for the MX message type. In the
Details section, you can view the full message for the entry. The message contains the
name of the default processing service for this document.

For information about how to view detailed information for the MX message, see “Step 3:
View Notifications and Related Messages” on page 122.

Step 5: Receive an MX Document from SAA

SWIFT Module reconciles MX message transmission notifications with the original MX
message. SWIFT Module updates the User Status of the message to NetworkAck or
NetworkNack based on the response from the SWIFT Network.

SWIFT Module receives MX documents from SAA and uses the transport setting for the
outbound traffic from SAA to determine how to receive them. The process for receiving
any MX message from SAA is the same as that described in Chapter 12, “Configuring
Notifications for Messages in XML v2 Format”.

The following services are included in the SWIFT Module samples. You can use these
services as is or as a model to create your own services:

B For MQHA, use the sample service, wm.xmlv2:recieveFromMQ.

B For AFT, use the sample service, wm.xmlv2:recieveFromAFT.

Validating MX Messages Conform to SWIFT Standards

With SWIFT Module, you can perform two types of MX message validation:

B Schema validation

webMethods SWIFT Module Installation and User’s Guide Version 7.1 139

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

B Extended validation

Schema Validation of MX Messages

Schema validations perform two tests on a message: that the MX message is a well-
formed XML document, and that the MX message is valid. To perform schema
validations, use the services provided in the WmPublic package. For information about
this package, see the Integration Server built-in services reference guide for your release.
See “About this Guide” for specific document titles.

Extended Validation of MX Messages

Extended, or non-schema validation, ensures that SWIFT MT and MX messages comply
with SWIFT Standards. Use SWIFT Module to perform extended validation when the
XML schema does not validate the document completely. To perform non-schema
validation on an MX message, run the wm.unifi.validation:validateMXMsg service in Designer.

You can also perform individual validation tasks, such as BIC validation, or IBAN
validation only.

To perform an individual validation task
1 Start Integration Server and Designer.

2 Configure the XMLV2Params document to trigger validation only for the fields that
you want to validate separately. For information about how to configure this
document, see “Process Information Section of the XMLv2 Parameters Document” on
page 257.

3 In Designer, run the SWIFT Module built-in service that performs the individual
validation task you want as follows:

Run this service... To validate that...

wm.unifi.validation:validateBIC ~ The following data types exist in the BIC directory
(ISO 9362) on SWIFTNet:

B XML elements of type BIC (data type:
BICIdentifier)

B XML elements of type BIC or BEI (data type:
AnyBICIdentifier).

wm.unifi.validation:validateBEI XML elements of type BEI (data type: BEIIdentifier)
exist in the BEI list on SWIFTNet.

140 webMethods SWIFT Module Installation and User’s Guide Version 7.1

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

Run this service... To validate that...

wm.unifi.validation:validateCurr ~ The following data types exist in Currency Code ISO
encyCode 4217:

B XML elements of type ActiveCurrency (data type:
ActiveCurrencyCode)

B XML elements of type ActiveOrHistoricCurrency
(Data type: ActiveOrHistoricCurrencyCode).

B XML elements containing an amount and a
currency (Data type: ActiveCurrencyAndAmount
and ActiveOrHistoricCurrencyAndAmount). Also
verifies that the number of digits in the amount is
as specified by ISO 4217 for that specific currency.

wm.unifi.validation:validateCou Country codes (data type: CountryCode) exist in ISO
ntryCode 3166.

wm.unifi.validation:validatelBA ~ IBAN identifiers (data type: IBANIdentifier) match

N the IBAN structure as specified by ISO 13616 (which
contains the country code, the specified number of
digits, and the basic bank account number).

webMethods SWIFT Module Installation and User’s Guide Version 7.1 141

13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages

142 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 4 Working with Market Practices

B O I B oottt 144
B Creating Market PractiCeSt 144
B Creating Market Practice RUIES i 145

webMethods SWIFT Module Installation and User’s Guide Version 7.1 143

14 Working with Market Practices

Overview

Market Practices are specific requirements for individual markets. Using Trading Partner
Agreements (TPAs), SWIFT Module supports customization of SWIFT FIN messages
based on specific trading partner sender-receiver pairs. For example, two partners
trading within France might have different processing requirements for their SWIFT FIN
messages than two trading partners within Austria.

SWIFT FIN messages that are exchanged between two partners may have additional
fields and/or a subset of key words. SWIFT Module enables you to maintain multiple
versions of a given message that conform to different Market Practices.

Creating Market Practices

Create a Market Practice by creating an alternate version of the SWIFT message based on
an original message record. In this way you maintain the original content of the message
record.

To create a Market Practice

1 Onyour file system, create identically named folders (for example, FrenchMarket) in
the following directories:

m Integration Server_directory\ packages\ WmFIN \import
m Integration Server_directory\ packages\ WmFIN\ config\ dfd

2 Copy dfd000.xm1 from WmFIN\ config\dfd\nov10 to
WmFIN\ config\dfd\ FrenchMarket, where nov10 is the SWIFT message version.

3 Copy the dfd*.xm1 file (for example, dfd541.xm1) for your message from
WmFIN\import\nov10 to WmFIN\import\ FrenchMarket.

4 Openyour French Market\dfd*.xml and edit it as necessary.

<?uml version="1.0" 7>
- <constraintss
<l-- Text Block for MTE41 -->
- <field name="11A::DENO" type="PatternType":>
<hizMame=Currency A - Currency of the Denomination</hizName>
<pattern:=/ /< CUR></patternz:
< /field=

5 In Designer, run the wm.fin.dev:importFINItems service for the message.

6 On the Input screen for the importFINItems service, set the version field to the name of
the new folder (for example, FrenchMarket). Set the remaining fields as desired.

144 webMethods SWIFT Module Installation and User’s Guide Version 7.1

14 Working with Market Practices

7 In Trading Networks, open the TPA and define the following parameters:

m Set ISDocumentName to the location the new message record (for example,
wm.fin.doc.FrenchMarket.catl:MT103).

= Set Version to a new Market Practice version name (for example, FrenchMarket).
m Set MarketPracticeRulesService to the Market Practice rule for this SWIFT message.

For more information about TPAs, see Chapter 8, “Customizing Trading Partner
Agreements”.

Creating Market Practice Rules

SWIFT Module provides sixteen common Market Practice rules for Category 5 SWIFT
FIN messages. You can create additional Market Practice rules by writing services based
on message documentation (.pdf) provided by SWIFT.

To use a new Market Practice rule, you must specify the service you created in the
MarketPracticeRulesService parameter in the TPA for the particular SWIFT message. For
more information about TPAs, see Chapter 8, “Customizing Trading Partner
Agreements”.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 145

14 Working with Market Practices

146 webMethods SWIFT Module Installation and User’s Guide Version 7.1

I I I Configuring SWIFT Module for FileAct and InterAct
Message Exchange Over SAG

B Configuration Steps for InterAct and FileAct Messaging Services over SAGRAHA 149
B Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA 161
B Using FTA to Transfer Files over SWIFTNet e 175

webMethods SWIFT Module Installation and User’s Guide Version 7.1 147

Il Configuring SWIFT Module for FileAct and InterAct Message Exchange Over SAG

148 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 5 Configuration Steps for InterAct and FileAct
Messaging Services over SAG RAHA

B OV I BI .oo 150
B Step 1: Prepare the Server to Handle Requests ...t 150
B Step 2: Prepare the Clientto Handle Requests ... 156
B Step 3: Invoke the Remote File Handler i, 159
webMethods SWIFT Module Installation and User’s Guide Version 7.1 149

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

Overview

The SWIFTNet component of SWIFT Module provides client-side and server-side
support for the InterAct and FileAct messaging services. You can use these services to
exchange messages and files with SWIFT Alliance Gateway (SAG).

The SWIFTNet component supports two types of transport: the Remote API Host
Adapter (RAHA) and the MQ Host Adapter (MQHA). This chapter describes how to
prepare your application server or client to exchange messages and files over SAG using
the RAHA transport. RAHA uses the Remote API (RA) client on your Integration Server
to enable message and file exchange.

For information about the SWIFT messaging services and the two types of transport, see
“SWIFTNet Component” on page 36. For more information about how to configure the
MQHA transport, see Chapter 16, “Configuration Steps for InterAct and FileAct
Messaging Services over SAG MQHA”".

Important! The following steps assume that you have already installed Integration Server,
Trading Networks, and SWIFT Module, and have imported the SWIFT lists that you need
in order to use the BICPlusIBAN and SEPA directories. For steps to install SWIFT
Module, see Chapter 2, “Installing webMethods SWIFT Module”. For more information
about BICs and IBANs, see Chapter 4, “Importing BICPlusIBAN and SEPA Routing
Directories”. For more information about the SWIFT software you need, work with
SWIFT to determine your software needs.

Step 1: Prepare the Server to Handle Requests

To prepare your server application to receive and respond to requests using the
SWIFTNet component of SWIFT Module, you must complete three configuration tasks:

Task Description

1 Configure SAG to communicate with your RA client, SWIFT Module, and
Integration Server.

2 Configure the SWIFTNet component.

3 Configure Trading Networks information.

150 webMethods SWIFT Module Installation and User’s Guide Version 7.1

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

Configuring SWIFT Alliance Gateway

Task 1 Configure SWIFT Alliance Gateway (SAG)

1 Install RAHA. Install RAHA on the same machine as SAG. RAHA enables SAG to
exchange messages and files with the RA client on the same machine as your
Integration Server. To obtain an appropriate RAHA, contact SWIFT.

2 Configure Message Partners and Endpoints. Configure the server message partners for the
server module, and the client message partners for the client module.

Important! If at any time SAG restarts, you must reload the WmSWIFTNetServer and
WmSWIFTNetClient packages.

For more information about completing these steps, see SWIFT Alliance Gateway File
Transfer Interface Guide, SWIFT Alliance Gateway Operations Guide, and Remote API for
SWIFT Alliance Gateway Operations Guide.

Configuring the SWIFTNet Component

Task 2 Configure the SWIFTNet component

1 Install a RA client on the same machine as Integration Server. The RA client enables
the SWIFTNet component to communicate with your SAG and SNL through RAHA.
To obtain an RA client, contact SWIFT.

2 Set the server application remote process connection settings.
a From Integration Server Administrator, select Adapters > SWIFT.
b On the SWIFT Module home page, select SWIFTNet Server Configuration > Edit.

¢ On the SWIFTNet Server Configuration screen, in the SWIFTNet Remote Process
Connection Configuration section, define how the remote process listeners
connect to Integration Server for an incoming request from the SWIFT Network as
follows:

For this property... Specify...

User Name The Integration Server user that has permissions to execute
the required services that the remote process listeners will
invoke for incoming requests from the SWIFT Network.

Password The user password.

Host IP The IP address of the machine on which Integration Server is
running.

Host Port The port of the machine on which Integration Server is
running.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 151

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

d Test the remote process connection settings by clicking Test Connection Settings.
SWIFT Module attempts to simulate opening a connection to Integration Server in
the same way as the SWIFTNet process handlers to establish a connection in real-
time for an incoming request from SWIFT Network.

If the test connection fails, an error message indicates which input values are
incorrect. For example, if the Host IP address value is incorrect, the error message
includes this value. You can enter the correct value and test again, if required.

3 Set the server application environment variables.

In the SWIFTNet Server Environment Info section on the SWIFTNet Server Configuration
screen, set the following environment properties for the RA client.

For this property...

Specify...

SWNET_CFG_PATH

The cfg folder of the RA instance in your system, for
example, c:\SWIFTAlliance\RA\Ral\ cfg)\.

SystemRoot

The system root folder. The value of this parameter
depends on your operating system, for example,
c:\windows.

SWNET_BIN_PATH

The lib folder of the RA instance in your system, for
example, c:\SWIFTAlliance \RA\lib.

SWNET_HOME

The RA Home folder, for example, c:\ SWIFTAlliance \ RA.

PROCESS_INSTANCES

The maximum number of processes the SWIFTNet
component will process at the same time. The default is 3.

Note: There is no maximum value for the number of
processes. However, the number of processes specified
should not exceed the concurrent server processes
configured on SAG as specified in the SAG
documentation.

RMI Port

The Remote Method Invocation (RMI) port where the
remote process listeners will be bound in the Java Naming
and Directory Interface (JNDI) tree, for example, 10985.

4 Set the server application connection properties in the SWIFTNet Server SAG Connection
Properties section of the SWIFTNet Server Configuration screen as described in the

table below.

When Integration Server starts, SWIFT Module automatically registers itself as the
server module with the SNL libraries on your SAG, and exchanges a series of pre-
defined SNL primitives in sequence with your SNL libraries using your RA client.

You define the properties that SWIFT Module uses to populate these primitives. For
the SWIFTNet component to exchange information with your SAG, you must set
these properties using the information you used to configure your SAG in
“Configuring SWIFT Alliance Gateway” on page 151.

152

webMethods SWIFT Module Installation and User’s Guide Version 7.1

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

Set the following properties to define how to connect to SAG using the RAHA

transport:
For this property... Specify...
SAGMessagePartner The Server message partner defined in SAG.

server_pki_profile

The user name of the configured profile that will be used
for opening a security context with SAG for sending the
request to SWIFT Network.

server_pki_password

The password associated with the user name of the server
PKI profile defined in your SAG. This password is used to
unlock the Server PKI profile.

userDN The Distinguished Name to be used for sign, encryption,
and authorization operations. Valid values are:
cn=encryptCN, o=bic, o=swift.

encryptDN The Distinguished Name to be used for encryption. Value

values are: cn=encryptCN, o=bic, o=swift

Sign, Decrypt, and
Authorization

True or False for each to specify whether the security
context opened during server initialization should be used.

Note: At least one field must be set to True.

AllFileEvents

True or False to populate the Sw:SubscribeFileEventRequest
primitive exchanged during server initialization.

B True—Default. SWIFT Module receives all events
generated by the SAG File subsystem during file
transfer.

B False—SWIFT Module receives only state transition
events.

FullFileStatus

True or False to populate the Sw:SubscribeFileEventRequest
primitive exchanged during server initialization.

B True—Default. SWIFT Module receives full details for
each event report generated by the SAG system.

B False—SWIFT Module does not receive the detailed
status for the file transfer.

SwEventEP

The file transfer event endpoint to which file transfer
events are posted by your SAG during FileAct operations.
This value is used to populate the primitive
Sw:SubscribeFileEventRequest exchanged during server
application initialization.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 153

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

For this property...

Specify...

ReceptionFolder

The default folder to receive incoming files. When this field
is blank, the folder is created in the following location:

Integration Server_directory\ packages\ WmSWIFTNetServer
\ pub\ SWIFTNetReceptionFolder.

If the specified folder does not exist, it is created.

SwTransferEP

The default transfer endpoint of the remote file handler.
This property is optional on Windows systems and
required on UNIX systems. If this field is specified, the
value must match a remote file handler endpoint running
on the same machine as Integration Server.

For information about invoking the remote file handler, see
“Step 3: Invoke the Remote File Handler” on page 159.

cryptoMode

Specifies how your SAG performs encryption operations.
Valid values are: Automatic or Manual.

Transport

The transport type that SWIFT Module uses to initialize the
server application to handle incoming responses from the
SWIFT Network. In this case, specify RAHA.

Note: The values specified for all properties in the table, except for the
SAGMessagePartner and Transport properties, are used by the sample services. For
information about the sample services, see webMethods SWIFT Module Samples Guide.

5 Click Save to save all configuration settings.

Configuring Trading Networks Information

Task 3 Configure Trading Networks information

SWIFT Module integrates with Trading Networks to process incoming requests.
Therefore, you must define certain properties within Trading Networks.

1 Define Trading Partner Profiles. In Trading Networks, define trading partner profiles for
yourself and for the all financial institutions with whom you want to exchange
messages and files. For more information about defining trading partner profiles for

154

webMethods SWIFT Module Installation and User’s Guide Version 7.1

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

use with SWIFT Module, see “About Trading Partner Profiles” on page 80.

2 Define TN Document Types. TN document types are definitions that tell Trading
Networks how to identify the incoming SNL request primitives and which processing
rules to apply when processing the document. You must create a TN document type
for each type of request that you handle.

When SWIFT Module receives a request, it invokes a Trading Networks service to
recognize the incoming requests (SWIFTNet primitives) for server applications.
Trading Networks matches the incoming request to one of the TN document types
that you created and extracts the information indicated by the attributes specified in
the TN document type.

When you define a TN document type, specify which root tag in the SNL primitive
that the TN document type must match.

To create an internal TN document type do the following;:

a Follow the instructions for creating document types in Trading Networks as
described in the Trading Networks administration guide for your release. See
“About this Guide” for specific document titles.

b Select XML.

c Inthe Name field on the Document Type Details screen, type the name you want to
assign to the internal TN document type.

d In the Description field, type a description for the internal TN document type.

e On the Identify tab, in the Root Tag field, type the value of the root tag of your
internal document, for example, Hand1eFileRequest.

Note: You can modify one of the sample TN document types included in the SWIFT
Module samples. For information about using samples, see webMethods SWIFT
Module Samples Guide.

3 Create Mapping Services. A mapping service defines the response to return to the client.
You must create a mapping service for each type of request you handle. SWIFT
Module provides sample services in the SWIFT Module samples that you can use as is
or as a model for creating new services. For information about SWIFT Module sample
services, see webMethods SWIFT Module Samples Guide.

4 Define Processing Rules. Processing rules enable you to process incoming requests (SNL
primitives) for SWIFTNet server applications by invoking the mapping services that
you create. Assign a processing rule to the TN document type to specify how Trading
Networks processes requests, including invoking specified processing services. You
must create a processing rule for each type of request you handle. To create a
processing rule do the following;:

webMethods SWIFT Module Installation and User’s Guide Version 7.1 155

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

Follow the instructions for creating processing rules in Trading Networks as
described in the Trading Networks administration guide for your release. See
“About this Guide” for specific document titles.

In the Name field on the Processing Rule Details screen, type a name for the
processing rule.

In the Description field, type a description for the processing rule.

On the Criteria tab, select the TN document type associated with the processing
rule.

While adding a new action to the processing rule, select the Execute a Service check
box and specify the service that you want this processing rule to execute.

To function properly, this service must meet the following requirements:

® The input/output signature must conform to the specification
wm.swiftnet.server.doc:SWIFTNetServerSideProcessingRule in the
WmSWIFTNetServer package.

® The output must contain a string xmlResponse. This is the response to the
incoming request that the application server returns to the client.

Using Designer, verify that your processing rule complies with this criteria:

On the Input/Output tab of the mapping service, in the Specification Reference field,
specify the SWIFTNetServerSideProcessingRule document.

Follow the instructions to complete the creation of a processing rule as described
in the Trading Networks administration guide for your release. See “About this
Guide” for specific document titles.

You can use or modify one of the sample server processing rules included in the
SWIFT Module samples. For information about samples, see webMethods SWIFT
Module Samples Guide. You can also create your own processing rules.

After completing the previous three configuration tasks, your server application is
ready to receive requests and send responses.

Step 2: Prepare the Client to Handle Requests

To prepare your client application to receive and respond to requests using the
SWIFTNet component of SWIFT Module, you must complete the following steps:

1

Install an RA Client. Install an RA client on the same machine as Integration Server.
The RA client enables the SWIFTNet component to communicate with SAG and SNL
through RAHA. To obtain an RA client, contact SWIFT.

Configure the client environment information.

From Integration Server Administrator, select Adapters> SWIFT.

b On the SWIFT Module home page, select SWIFTNet Client Configuration > Edit.

156

webMethods SWIFT Module Installation and User’s Guide Version 7.1

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

¢ On the Edit SWIFTNet Client Configuration screen, in the SWIFTNet Client
Environment Information section, set the following environment properties
according to the properties set for the RA client:

For this property...

Specify...

SWNET_CFG_PATH

The cfg folder of the RA instance in your system, for
example, c:\SWIFTAlliance \RA\Ral\ cfg\

SystemRoot

The system root folder. The value of this parameter
depends on your operating system, for example,
c:\windows.

SWNET_BIN_PATH

The lib folder of the RA instance in your system, for
example, c:\SWIFTAlliance \ RA\lib.

SWNET_HOME The RA home folder, for example,
c:\SWIFTAlliance \RA.
RMI Port The Remote Method Invocation (RMI) port where the

remote process listeners will be bound in the Java
Naming and Directory Interface (JNDI) tree, for example,
10985.

d In the SWIFTNet Client SAG Connection Configuration section, set the following
properties to define how to connect to SAG using the RAHA transport:

For this property...

Specify...

SAGMessagePartner

The Client message partner defined in SAG.

client_pki_profile

The user name of the configured profile used in opening
a security context with SAG for sending the request to
SWIFT Network.

client_pki_password

The password associated with the user name of the client
PKI profile defined in your SAG. This password is used
to unlock the Client PKI profile.

cryptoMode Automatic or Manual to specify how your SAG performs
encryption operations. The default value is Automatic.

requestor The SWIFT BIC of the partner from where the message
originates. Valid values are: o=bic, o=swift

responder The SWIFT BIC of the partner that serves the request sent
by the SWIFTNet client. Valid values are: o=bic, o=swift

service The default service to be used by SAG for processing the
request from the client.

encryptDN The Distinguished Name to be used for encryption. Valid

values are: cn=encryptCN, o=bic, o=swift.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 157

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

For this property...

Specify...

userDN

The Distinguished Name to be used for sign, encryption,
and authorization operations. Valid values are:
cn=encryptCN, o=bic, o=swift

Sign, Decrypt, and
Authorization

Defines whether to use the security context opened
during server initialization. Valid values: True or False.

ReceptionFolder

The default folder to receive incoming files. If the
specified folder does not exist, it is created. When this
field is blank, the default value is:

Integration Server_directory\ packages\ WmSWIFTNetSer
ver \ pub\ SWIFTNetReceptionFolder.

physicalName

The absolute path of the file to be transferred on the
machine on which SAG is running, for example,
c:/temp/log.log

logicalName The logical name of the file to be used during the
transfer, for example, sample.

SwTransferEP Default transfer endpoint of the remote file handler. If
this field is specified, the value must match a remote file
handler endpoint running on the same machine as
Integration Server. For information about invoking the
remote file handler, see “Step 3: Invoke the Remote File
Handler” on page 159.

SwEventEP The file transfer event endpoint where file transfer events
(associated with file transfers) should be sent, for
example, File_Status_Event_EP.

Note: When SnF Pull or Push is used to send the file
transfer events to the application server host Integration
Server, the value specified for this field must be the same
on both the client and the application server.

Transport RAHA

e Click Save to save all configuration settings.
Note: The values specified for all properties in the table, except for the
SAGMessagePartner and Transport properties, are used by the sample services. For
information about the sample services, see webMethodsSWIFT Module Samples
Guide.
158 webMethods SWIFT Module Installation and User’s Guide Version 7.1

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

3 Invoke the wm.swiftnet.client.services:swArguments service.

Before exchanging any primitives with SAG using the SWIFTNet component, the
client application must invoke the wm.swiftnet.client.services:swArguments service in
theWmSWIFTNetClient package at least once. The only parameter required to be
passed to this service is SAGMessagePartner, which is the message partner defined as
the "Client" in your SAG during configuration.

Step 3: Invoke the Remote File Handler

You must invoke the Remote File Handler to transfer the files that reside in your system.

To run the Remote File Handler

1 Run the following command from the RA installation bin directory:

RA_Installation_Directory\RA\bin\swiftnet.bat init -S
ra_instance

where ra_instance is the instance of the Remote API on your system, for example, RAL.

2 Start the swfa_handler with the command line arguments as follows:
swfa_handler hostName:portNumber:[ss1] transferEndpoint
[Process 1D]

The hostName is the name of the host where SAG/SNL is installed as in the following
examples:
swfa_handler snlhost:48003:ssT MyUniqueEndpoint 23450

swfa_handler snlhost:48003 MyUniqueEndpoint 23450
swfa_handler snlhost:48003 MyUniqueEndpoint

Note: The swfa_handler is present in the RA_HOME\bin directory.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 159

15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA

160 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 6 Configuration Steps for InterAct and FileAct
Messaging Services over SAG MQHA

B OV I BI .oo 162
B Step 1: Prepare the Server to Handle Requests ...t 163
B Step 2: Prepare the Clientto Handle Requests ... 169
B Step 3: Initialization and Request-Time Operations for Your Client or Server Application 172
webMethods SWIFT Module Installation and User’s Guide Version 7.1 161

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

Overview

The SWIFTNet component of SWIFT Module supports two types of transport for
InterAct and FileAct messaging services over SWIFT Alliance Gateway (SAG): the
Remote API Host Adapter (RAHA) and the MQ Host Adapter (MQHA).

The MQHA enables your SWIFTNet component client and server applications to
communicate with SAG through IBM WebSphere MQ.

This chapter describes how to prepare your server or client application to exchange
messages and files over SAG using the MQHA transport. For more information about the
SWIFT messaging services and the two types of transport, see “SWIFTNet Component”
on page 36. For information about how to configure the RAHA transport, see Chapter 15,
“Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA”.

The following diagram shows the response-request interaction between the client, server,
and SAG when you use the MQHA transport.

The client and server must first register with the SWIFT Network. SAG must be installed
on both the client and the server. In the diagram above, the applications are designated as
SAG 1 for the client and SAG 2 for the server.

1 The client registers itself with the SWIFT Network through SAG 1.

2 The client application puts a message in the client request queue.

162 webMethods SWIFT Module Installation and User’s Guide Version 7.1

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

8
9

SAG 1 takes the message from this queue and determines the destination for the
message is the server.

SAG 1 sends this message across the SWIFT Network to SAG 2.

On receipt of this message, SAG 2 puts the message in the server request queue of the
server application.

The server application takes the message from the server request queue and processes
the message as required. Then, the server application puts the reply message into the
server response queue.

SAG 2 takes this message, determines its destination, and sends it across the SWIFT
Network to SAG 1.

On receipt of this message, SAG 1 puts it in the client response queue.

The client takes this message from this queue.

To prepare your server application or your client application for the response-request
interaction with SAG, you must complete the steps described in the following sections.

Step 1: Prepare the Server to Handle Requests

To prepare your server application to exchange messages and files over SAG using
MQHA, you must complete the following stages of configuration:

Task Description

1

Configure SAG to communicate with your SWIFT Module through the IBM
MQ request and reply queues.

Configure the SWIFTNet component.

Configure Trading Networks information.

Configuring SWIFT Alliance Gateway

Task 1 Configure SWIFT Alliance Gateway

1

Define MQ queues as per SWIFT Alliance Gateway MQHA configuration. To handle the
exchange of requests between your server application and SAG, you must configure
the following types of queues on the SAG side: client request queue, client reply
queue, server request queue, and server reply queue.

® The client request and reply queues are used by the client application.

The server request and reply queues are used by the server application, as
described in the “Overview” on page 94.

In SAG, you must associate these queues with the applications that will process
messages from these queues.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 163

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

Configure How to Handle Messages for Client Queues. Configure how SAG retrieves
messages from the client request queue and how it puts response messages into the

client reply queue.

Configure How to Handle Messages for Server Queues. Configure how SAG puts messages
into the server request queue and how it gets response messages from the server

reply queue.

For more information about completing these steps, see SWIFT Alliance Gateway MQ Host
Adapter Configuration Guide and SWIFT Alliance Gateway Operations Guide.

Configuring the SWIFTNet Component

Task 2 Configure the SWIFTNet component

1

Install webMethods WebSphere MQ Adapter. If you have not already installed
WebSphere MQ Adapter, see webMethods WebSphere MQ Adapter Installation and
User’s Guide for installation instructions.

Set up the MQ queues. In WebSphere MQ Adapter, configure the adapter connection
properties for the MQ server request and server reply queues to handle incoming
requests from the SWIFT Network. For complete information about configuring
adapter connections, see webMethods WebSphere MQ Adapter Installation and User’s

Guide.

On the adapter's Configure Connection Type screen, specify the MQHA-specific
information for connection settings for the queues as follows:

a Specify the settings from SWIFT Module to the IBM MQ Server Request Queue:

For this property...

Specify...

Queue Manager Name

MQHA.SAG.QM

Host Name

The name of the server on which IBM WebSphere
MQSeries is running.

Server Connection Channel

MQHA.CHANNEL

Queue Name

MQHA.SERVER.REQUEST

b Specify the settings from IBM MQ Server Reply Queue to SWIFT Module:

For this property...

Specify...

Queue Manager Name

MQHA.SAG.QM

Host Name

The name of the server on which IBM WebSphere
MQSeries is running.

Server Connection Channel

MQHA.CHANNEL

Queue Name

MQHA.SERVER.REPLY

164

webMethods SWIFT Module Installation and User’s Guide Version 7.1

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

3 Create the MQ listener and configure the listener notification. You must create a single-queue
listener to listen to all incoming requests from the SWIFT Network. This listener is
associated with the connection configured for the IBM MQ Server Request Queue.

You must also configure an asynchronous WebSphere MQ Adapter notification for
the MQ listener and define a document trigger for the notification document. This
trigger calls the wm.swiftnet.server.mg.inbound.handleSWIFTRequest service that extracts the
required values from the notification document and publishes the SNL primitive to
Trading Networks. Configure the MQ listener notification document as described in
step 6.

For instructions on how to create the listener and configure the listener notification,
see webMethods WebSphere MQ Adapter Installation and User’s Guide. For more
information about triggers, see Publish-Subscribe Developer’s Guide.

4 Create the MQ request/reply client service. This service sends and receives messages from
the SAG client queues configured in MQ. This service is also used to start and stop
the server application, since the primitives required for starting and stopping a server
application are communicated to SAG through client queues. For detailed
instructions on creating the request/reply service, see webMethods WebSphere MQ
Adapter Installation and User’s Guide.

You must specify the following SWIFT-specific properties for this service:

a The Wait Interval must have a value greater than 90 seconds. For more information,
see the SWIFT documentation.

b Define the msgHeader properties for the MQMD Header:

For this property... Specify...

ReplyToQueueMgr MQHA. SAG.QM (default value for MQHA)
ReplyToQ MQHA.CLIENT.REPLY

MsgType Datagram

Format MQSTR

5 Create the MQ put server service. This service sends messages to the SAG response queue
configured in MQ. For instructions on how to create the put service, see webMethods
WebSphere MQ Adapter Installation and User’s Guide.

Define the msgHeader properties for the MQMD Header:

For this property... Specify...

Format MQSTR

MsgType REPLY

Feedback MQFB_APPL_FIRST (or 65536)

6 Configure the server application. Define how the server application connects to SAG
using the MQHA transport:

webMethods SWIFT Module Installation and User’s Guide Version 7.1 165

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

a From Integration Server Administrator, click Adapters> SWIFT.
b In the SWIFT Module home page, click SWIFTNet Server Configuration > Edit.

¢ In the SWIFTNet Server SAG Connection Properties section on the SWIFTNet Server
Configuration screen, set the following properties.

Important! When using MQHA, leave the default values in the fields in the Remote
Process Connection Configuration and Server Environment Information sections. You
must configure the fields in these sections only when you use the RAHA

transport.
For this property... Specify...
SAGMessagePartner The Server message partner defined in SAG.

server_pki_profile

The user name of the configured profile that is used
when opening a security context with SAG for sending
the request to the SWIFT Network.

server_pki_password

The password associated with the user name of the
server PKI profile defined in your SAG, used to unlock
the Server PKI profile.

userDN The Distinguished Name to use for sign, encryption,
and authorization operations, for example,
cn=encryptCN, o=bic, o=swift

encryptDN The Distinguished Name used for encryption, for

example, cn=encryptCN, o=bic, o=swift

Sign, Decrypt, and
Authorization

Defines if the security context opened during server
initialization should be used for sign on, decryption, or
authorization. Valid values are True and False.

At least one field must be set to True.

AllFileEvents

Indicates whether to populate
Sw:SubscribeFileEventRequest primitive exchanged during
server initialization.

B True—Default. SWIFT Module receives all events
generated by the SAG file sub-system during file
transfer.

B False—SWIFT Module receives only state transition
events.

166

webMethods SWIFT Module Installation and User’s Guide Version 7.1

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

For this property...

Specify...

FullFileStatus

Indicates whether to populate
Sw:SubscribeFileEventRequest primitive exchanged during
server initialization.

B True—Default. SWIFT Module receives full details
for each event report generated by the SAG system.

B False—SWIFT Module does not receive full details
for each event report generated.

SwEventEP

The file transfer event end point to which file transfer
events are posted by your SAG during FileAct
operations. This value is used to populate the
Sw:SubscribeFileEventRequest primitive exchanged
during server initialization.

ReceptionFolder

The default folder for incoming files. If the specified
folder does not exist, it is created. When this field is
blank, the reception folder is created in:

Integration Server_directory\ packages\
WmSWIFTNetServer\ pub\ SWIFTNetReceptionFolder.

SwTransferEP

The default transfer endpoint of the remote file handler.
This property is optional on Windows systems and
required on UNIX systems. If SwTransferEP is specified,
the value must match a remote file handler endpoint
running on the same machine as Integration Server. For
information on invoking the remote file handler, see
“Step 3: Invoke the Remote File Handler” on page 159.

cryptoMode

Automatic or Manual to specify how your SAG performs
encryption operations.

Transport

The transport type that SWIFT Module uses to initialize
the application server to handle incoming responses
from the SWIFT Network. The default value is MQHA.

MQ Request Reply
Client Service

You can accept the default service or specify your own.
For more information about this property, see step 4.

The wm.swiftnet.config.sample.mg.services:getAndRecieveService
sample service is the default. For information about this
service, see webMethods SWIFT Module Samples Guide.

If you accept the default service, the default client queue
and queue manager settings are used. For more
information on the queue settings, see SWIFT Alliance
Gateway MQ Host Adapter Configuration Guide.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 167

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

7

For this property... Specify...

MQ Put Server Service You can accept the default service or specify your own.
For more information about this property, see step 5.

The wm.swiftnet.config.sample.mq.services:serverResponsel
sample service is set as the default and is included with
the SWIFT Module samples. For information about this
service, see webMethods SWIFT Module Samples Guide.

The default server queue and queue manager settings
are used if you accept the default service. For more
information on server queue settings, see SWIFT
Alliance Gateway MQ Host Adapter Configuration Guide.

MQ Listener The MQ listener notification you created in step 3.

Notification Document This notification document will be published for an

incoming request at the MQ server request queue.

Note: The values specified for all properties in the table, except for the Transport, MQ
Request Reply Client Service, MQ Put Server Service, and MQ Listener Notification Document
properties, are used by the sample services. For information about the sample
services, see webMethods SWIFT Module Samples Guide.

Click Save to save all configuration settings.

Configuring Trading Networks Information

Task 3 Configure Trading Networks information

1

Define Trading Partner Profiles. Define trading partner profiles for your enterprise and
each partner with whom you exchange files or messages. For more information about
defining trading partner profiles for use with SWIFT Module, see “About Trading
Partner Profiles” on page 80.

Define TN Document Types. TN document types are definitions that tell Trading
Networks how to identify the incoming SNL request primitives and which processing
rules to apply when processing the document. You must create a TN document type
for each type of request that you handle.

For information about creating TN document types, see step 2 in “Configuring
Trading Networks Information” on page 154. For general information about using TN
document types, see the Trading Networks administration guide for your release. See
“About this Guide” for specific document titles.

168

webMethods SWIFT Module Installation and User’s Guide Version 7.1

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

3

Create Mapping Services. A mapping service defines the response to return to the client.
You must create a mapping service for each type of request that you handle. SWIFT
Module provides sample services in the SWIFT Module samples that you can use as is
or as a model to build your own services. For information about the sample services,
see webMethods SWIFT Module Samples Guide.

Define Processing Rules. Processing rules enable you to process incoming requests.
Assign a processing rule to a TN document type so that Trading Networks knows
how to process the request, including which processing service to invoke. You must
create a processing rule for each type of request you handle.

For information about processing rules, see step 4 in “Configuring Trading Networks
Information” on page 154. For general information about using processing rules, see
the Trading Networks administration guide for your release. See “About this Guide”
for specific document titles.

Step 2: Prepare the Client to Handle Requests

To prepare your client application to receive and respond to requests from SAG over the
IBM WebSphere MQ transport, you must complete the following steps:

1

Set up the MQ Queues. In WebSphere MQ Adapter, configure the adapter connection
properties for the MQ server request queue and server reply queue to handle
incoming requests from the SWIFT Network. For complete information about
configuring adapter connections, see webMethods WebSphere MQ Adapter Installation
and User’s Guide.

m Specity the MQHA-specific information for the connection settings from SWIFT
Module to IBM MQ Client Request Queue:

For this property... Specify...
Queue Manager Name MQHA. SAG.QM
Host Name The name of the server on which IBM WebSphere

MQSeries is running.

Server Connection Channel MQHA.CHANNEL
Queue Name MQHA.CLIENT.REQUEST

m Specify the MQHA-specific information for the connection settings from IBM MQ
Client Reply Queue to SWIFT Module:

For this property... Specify...
Queue Manager Name MQHA. SAG.QM
Host Name The name of the server on which IBM WebSphere

MQSeries is running.

Server Connection Channel MQHA.CHANNEL

webMethods SWIFT Module Installation and User’s Guide Version 7.1 169

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

For this property...

Specify...

Queue Name

MQHA.CLIENT.REPLY

2 Define how the client application connects to SAG using MQHA transport as follows:

a
b

c

In Integration Server Administrator, click Adapters> SWIFT.
In the SWIFT Module home page, click SWIFTNet Client Configuration > Edit.

In the SWIFTNet Client SAG Connection Configuration section, set the following
properties to define how to connect to SAG using MQHA transport:

Important! When using MQHA, leave the default values in the fields in the
SWIFTNet Client Environment Information section. Configure the fields in this section
only when using RAHA transport.

For this property...

Specify...

SAGMessagePartne
r

The Client message partner defined in SAG.

client_pki_profile

The user name of the configured profile that is used for
opening a security context with SAG (to send the request to
SWIFT Network).

client_pki_passwor
d

The password associated with the user name of the client
PKI profile defined in your SAG. This is used to unlock the
Client PKI profile.

cryptoMode Automatic or Manual to specify how your SAG performs
encryption operations. The default value is Automatic.

requestor The SWIFT BIC of the partner from where the message
originates, for example, o=bic, o=swift

responder The SWIFT BIC of the partner that will serve the request
sent by the SWIFTNet client, for example, o=bic, o=swift

service The default service to be used by SAG for processing the
request from the client.

encryptDN The Distinguished Name to be used for encryption, for
example, cn=encryptCN, o=bic, o=swift

userDN The Distinguished Name to be used for sign, encryption,

and authorization operations, for example, cn=encryptCN,
o=bic, o=swift

Sign, Decrypt, and
Authorization

True or False to define if the security context opened
during server initialization should be used for sign on,
decryption or authorization.

170

webMethods SWIFT Module Installation and User’s Guide Version 7.1

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

For this property...

Specify...

ReceptionFolder

The default folder to receive incoming files. When this field
is blank, the folder is created in the following path:

Integration Server_directory\ packages\ WmSWIFTNetClient
\ pub\ SWIFTNetReceptionFolder.

If the specified folder does not exist, it is created.

physicalName

The absolute path of the file (to be transferred), for
example, c:/temp/log.log.

For more information, see SWIFTNet Service Design Guide
and SWIFTNet Link Interface Specification.

logicalName

The logical name of the file that should be used during the
transfer, for example, sample.

SwTransferEP

The default transfer endpoint of the remote file handler. If
SwTransferEP is specified, the value must match a remote
file handler endpoint running on the same machine as
Integration Server.

For information on invoking the remote file handler, see
“Step 3: Invoke the Remote File Handler” on page 159.

SwEventEP

The file transfer event end point where file transfer events
should be sent, for example, File_Status_Event_EP.

Note: When SnF Pull or Push is used to send the file transfer
events to the server application host Integration Server, the
value specified for this parameter must be the same on
both the client and the server application.

Transport

MQHA. This is the default value.

MQ Request Reply
Client Service

You can accept the default service or specify your own. For
more information about the MQ request/reply client
service, see step 4 in “Configuring the SWIFTNet
Component” on page 164.

The default service is wm.swiftnet.config.sample.mgq.services:
getAndRecieveService, included in the SWIFT Module
samples. For information about the sample services, see
webMethods SWIFT Module Samples Guide.

If you accept the default service, the default client queue
and queue manager settings are used. For more
information on the queue settings, see SWIFT Alliance
Gateway MQ Host Adapter Configuration Guide.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 171

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

Note: The values specified for all properties in the table, except for the Transport
and MQ Request Reply Client Service properties, are used by the sample services. For
information about the sample services, see webMethods SWIFT Module Samples
Guide.

d Click Save to save all configuration settings.

Step 3: Initialization and Request-Time Operations for Your
Client or Server Application

For an application to communicate with SAG, it must first register itself either as a client
or a server. Then the application can be initialized to interact with SAG and perform the
request-time operations required for the message exchange.

Initializing the Client or Server Application

To initialize the client and the server application, first configure the input fields for the
initialization request in SWIFT Module, as described in “Step 1: Prepare the Server to
Handle Requests” on page 163 and “Step 2: Prepare the Client to Handle Requests” on
page 169.

Initializing the client and server applications involves the exchange of primitives, as
required by SWIFT. You can find sample services that demonstrate this primitive
exchange for each type of application in the SWIFT Module samples.

During initialization, a security context is established between the client and server
applications with the specified MessagePartner. The security context for the userDN
parameter is stored in the shared cache with MessagePartner as its key value pair. The
security context is fetched from the shared cache when sending or receiving requests
from SWIFT Network. Once the server and client initialization is complete, the server can
handle all incoming requests and the client can send requests to SWIFT Network.

Request-Time Operations

Client Application

Once the security context has been established, the client application is ready to send an
InterAct request to SWIFT.

172 webMethods SWIFT Module Installation and User’s Guide Version 7.1

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

To send an InterAct request to SWIFT:

1 Create an exchange request and an associated envelope. The exchange request
consists of two content parts:

m xmldata—The payload of the request.
m sagenv—The envelope required by SAG for processing the request.
2 Call the request/reply service for the MQ transport with the request.

3 After receiving the response from SWIFT Network, the client submits the response
message to Trading Networks. The ExchangeResponse consists of two content parts:

® xmldata—The payload of the request.
m sagenv—The envelope required by SAG for processing the request.

SWIFT Module provides sample services that demonstrate how to send an InterAct
request to SWIFT. For information about the SWIFT Module sample services, see
webMethods SWIFT Module Samples Guide.

Server Application

Once the Server application is initialized with the identified MessagePartner, it handles all
incoming requests as described in the following procedure:

1 SAG puts all requests for this server application message partner in the server request
queue. Configure an asynchronous listener notification for the server request queue
as described in step 6 in “Configuring the SWIFTNet Component” on page 164. Once
the message is received by the listener, the notification is triggered and invokes a
handleRequest service that extracts the incoming request from the notification
document.

2 The handleRequest service creates a HandleRequest message and submits this message
to Trading Networks. The HandleRequest message consists of the following content
parts:

® xmldata—The payload of the request.
m sagenv—The envelope required by SAG for processing the request.

m msgld—The message ID from the message queue, used for associating the
response message with the request message that will be returned to SAG.

3 After submitting the request to Trading Networks, the configured processing rule is
triggered based on the document type. When the mapping of the request/reply
service is completed, the reply primitive is submitted to Trading Networks.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 173

16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA

4 The wm.swiftnet.server.ma.trp.respond service puts the response document in the server
reply queue. MQHA on SAG takes the server application response and routes the
response to the requesting client through the SWIFT Network.

This service uses the MQ Put service that you configured for MQ Put Server Service as
described in step 5 in “Configuring the SWIFTNet Component” on page 164. The
HandleResponse message consists of the following content parts:

® xmldata—The payload of the request.
m sagenv—The envelope required by SAG for processing the request.

m correlationld—The correlation ID for the response message. This is set as MQDM
headers and sent back to SAG. SAG uses the correlation ID to associate the reply
message with the request message with the same msgld, and then returns the
response to the client.

m msgld—The message ID from the message queue, used to associate the response
message with the request message that is returned to SAG.

Termination

After completing the request/response message exchange, you can invoke the
termination request service to stop the client application and the server application. After
terminating the server application, the security context for the server message partner is
removed from the shared cache. For sample services that demonstrate how to close the
client and server applications, see webMethods SWIFT Module Samples Guide.

For more information about the primitives exchanged during application termination,
see the SWIFT documentation.

174 webMethods SWIFT Module Installation and User’s Guide Version 7.1

1 7 Using FTA to Transfer Files over SWIFTNet

B O I B oottt 176
B Placing a Data File in the SAG OQutput DIrectory, 176
B CreatingaCompanion File o 176
B Generating Data File Processing Status Repors, 176

webMethods SWIFT Module Installation and User’s Guide Version 7.1 175

17 Using FTA to Transfer Files over SWIFTNet

Overview

The SWIFT File Transfer Adapter (FTA) automates file transfer from SWIFT Module to
other parties over SWIFTNet. The SWIFT File Transfer Adapter (FTA) manages the
SWIFT Alliance Gateway (SAG) directories for file transfer related tasks:

B Places the data file in the SAG output directory for transfer over SWIFTNet.
B Creates a companion file to the data file and sends it to the SAG output directory.

B Monitors the SAG input directory for processing status reports generated by FTA.

Placing a Data File in the SAG Output Directory

SWIFT Module allows you to use a custom utility service to place data files that you want
to transfer over SWIFTNet into the SAG output directory. The FT-Interface provided by
SWIFT uses the FTA configuration parameters to pick up the file from the SAG output
directory and send it over SWIFTNet. You can configure the FTA configuration
parameters using the SWIFT FT-Interface. For information how to configure FTA, see
SWIFT Alliance Access 6.1 File Transfer Interface Guide.

Creating a Companion File

The FTA allows you to create a companion parameter file and transfer it with the data file
from SWIFT Module to the SAG host that processes the data files. You can override the
FTA configuration parameters with your user-defined parameters by running the
wm.swiftnet.client.transport. FTA:generateCompanionFile service in Designer. The service generates
a companion parameter file with the same file name as the related data file, followed by
the .par extension.

Companion Parameter File Data Structure

The data in the companion parameter file is structured according to the
ParametersSchema.xsd XML schema file. After you install SAG, this file is created in the
SAG_HOME \data directory, where SAG_HOME is the SAG installation directory.

After you install SWIFT Module, you can find the corresponding TN document types for
the companion parameter files in the following directory:
Integration Server_directory \ packages\ WmSWIFTNetClient\ config\ FTADocTypes.dat

Generating Data File Processing Status Reports

You can generate reports about the processing status of data files by configuring FTA
emission and reception profiles. SWIFT Module scans the SAG input directory for report
files and then submits the reports to Trading Networks in XML format.

176 webMethods SWIFT Module Installation and User’s Guide Version 7.1

17 Using FTA to Transfer Files over SWIFTNet

To scan the SAG input directory for report files and submit the reports to Trading Networks

1 Import the document types for report XML files in Trading Networks (follow the
instructions for importing document types in the Trading Networks administration
guide for your release. See “About this Guide” for specific document titles.)

2 Select the following file: Integration Server_directory\ packages\ WmSWIFTNetClient
\ config\FTADocTypes.dat.

The TN document types are imported and listed on the Available Items screen.

3 In Designer, run wm.swiftnet.client.transport. FTA:scanForReports. This service does the
following:

® Scans the SAG input directory for report files.

m Invokes wm.swiftnet.client.transport.FTA:submitToTN to submit the report to Trading
Networks.

Report File Data Structure

The content of a report file depends on the reason why it is generated. Content within a
report file is structured using XML according to the ReportSchema.xsd XML schema file.
This schema file is located in the SAG data directory after installing SAG. FTA generates
the following report files:

Type File Extension XML Element Reason

Success .ok <Success> A file was successfully sent or received.

Delivery dlv <Delivery> FTA received a delivery notification for

Notification a file.

Error .err <Error> An error occurred during the incoming
or outgoing file transfer.

Authorization .arn <AuthNotif FTA received an authorization or

or Refusal > refusal notification, which is also

included in the file.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 177

17 Using FTA to Transfer Files over SWIFTNet

178 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

B OWMFIN PaCKage .. 180
B WmSWIFTCOmMMON Packageouriii e 267
B WmEstdCommonLib Package ... 274
B WmSWIFTNetClient Packaget e 274
B WMSWIFTNetServer Packageoounirin e 286
B SWIFTNet Server and CIent EITOrso e 292
B Services and the SNL Request and Response Primitives, 293
webMethods SWIFT Module Installation and User’s Guide Version 7.1 179

A Services

WmFIN Package

The WmFIN package contains services used to implement and support the SWIFT FIN-
compliant functionality of webMethods SWIFT Module. This package provides core
services for processing and transporting MX and MT messages, as well as services for
handling inbound notifications from SWIFT Alliance Access to webMethods SWIFT
Module. This package contains the following folders:

Folder Contains services to...

wm.casmf.init Folder Perform initialization routines for CASmf.
wm.casmf.trp Folder Send and receive messages using CASmf.
wm.casmf.util Folder Retrieve property values specified in the

Integration Server_directory\ packages\ WmFIN \ config\ w
mcasmf.cnf file.

wm.fin.bic Folder Derive or validate BICPlusIBAN information.

wm.fin.dev Folder Install and configure new SWIFT FIN messages during
design-time.

wm.fin.dfd Folder Load and use the FIN Data Field Dictionary (DFD).

wm.fin.doc Folder Define the document structures that represent particular

sections of SWIFT FIN messages, such as the header and
trailer structures and their fields, and the generic
structure definitions for incoming and outgoing SWIFT
FIN messages.

wm.fin.format Folder Define the record definitions that describe the record
structures for the trailer section (block 5) of a SWIFT FIN
message.

wm.fin.init Folder Initialize or de-initialize FIN packages on startup and

shutdown of Integration Server.

wm.fin.map Folder Provide easy frameworks for creating the header and
trailer sections of SWIFT FIN messages for outbound (to
be sent to SWIFT) messages.

wm.fin.marketPractice Folder Support Market Practices for some Category 5 messages.
The services in this package are for internal use only.

wm.fin.rules Folder Use utility functions to implement network validation
rules.

wm.fin.sepa Folder Derive or validate data against the SEPA Routing
directory.

wm.fin.transport Folder Exchange messages with SWIFT using Automated File

Transfer (AFT) and MQSeries.

180 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Folder

Contains services to...

wm.fin.trp Folder

Provide single-point access to send and receive SWIFT
FIN messages.

wm.fin.utils Folder

Use generic utility services providing various
functionality.

wm.fin.validation Folder

Facilitate the validation of a SWIFT FIN message.

wm.sdk.fin Folder

Support the conversion of MT messages into a flat file or
XML format, as needed using SDK related Java services,
XSDs, and IS document types.

wm.unifi Folder

Validate an MX message against the SWIFT generic rule
book.

wm.xmlv2.dev Folder

Create Trading Networks data for a particular message
type.

wm.xmlv2.doc Folder

Define a TN document type that is used as the TPA
document.

wm.xmlv2.notifications Folder

Handle incoming delivery notifications.

wm.xmlv2.process Folder

Apply processing rules to documents exchanged over
SAA.

wm.xmlv2.transport Folder

Submit DataPDU input in XML format to Trading
Networks for further processing of the bizdoc.

wm.xmlv2.utils Folder

Contains utility services for message encoding.

wm.casmf.init Folder

The services in this folder perform initialization routines for CASmf.

wm.casmf.init:shutdown

Unregisters the application with CASmf.

wm.casmf.init:startup

Registers the application with CASmf Input Name.

wm.casmf.trp Folder

The services in this folder send and receive messages using CASmf.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

181

A Services

wm.casmf.trp:casmfSendReceiveSchedule

Run as a scheduled job. This service does the following:

1 Sends all the outbound messages to CASmf. It uses the value specified for
wm.casmf.send.mapid in the wmcasmf.cnf file (located in the folder,
Integration Server_directory\ packages\ WmFIN \ config).

2 Retrieves the incoming messages from CASmf using the value specified for
wm.casmf.receive.mapid in the wmcasmf.cnf file.

3 Publishes the received messages to Integration Server and webMethods Broker for
processing by the WmFIN package service, wm.fin.trp:receive.

wm.casmf.trp:processOutboundMessage

This service is invoked during publishing an outbound message, when the transport
parameter in the message TPA is set to CASmf. It writes the SWIFT message with a unique
file name to the directory specified by the wm.casmf.send message.folder property in the
wmcasmf.cnf file. (The wmcasmf.cnf file is located in the directory

Integration Server_directory\ packages\ WmFIN \ config)\ .)

Input Parameters

wm.fin.doc:FINOutb ~ Document Document subscribed by this service when the
oundMessage transport parameter in the message TPA is set to CASmf.

Output Parameters

None.

wm.casmf.trp:sendAndReceive

The wm.casmf.trp:casmfSendReceiveSchedule service invokes this service, after it is done its
processing. This service sends and receives messages from CASmf. It accumulates
messages received from CASmf into a String.

Input Parameters

None.

Output Parameters

receivedFINMessages ~ String List List of messages received from CASmf.

182 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.casmf.trp:CASmfOutboundTrigger

This trigger processes outbound SWIFT FIN messages that must be sent via CASmf. It
then invokes wm.casmf.trp:processOutboundMessage to process the outbound SWIFT message.

wm.casmf.util Folder

This folder contains utility services for retrieving property values specified in the
Integration Server_directory\ packages\ WmFIN \ config\ wmcasmf.cnf.

wm.casmf.util:getOutboundMessageFolder

This service retrieves the value for the wm.casmf.send.message.folder property specified
in Integration Server_directory\ packages\ WmFIN \ config \ wmcasmf.cnf file. This is the
folder in which all outbound SWIFT FIN messages to CASmf are stored prior to sending
them to CASmf.

Input Parameters

None.

Output Parameters

folder String Value specified for the wm.casmf.send.message.folder
property in the wmcasmf.cnf file.

wm.fin.bic Folder

This folder contains BICPlusIBAN-related services used to derive or validate
BICPlusIBAN information.

wm.fin.bic:deriveBICfromIBAN

This services uses the IBAN provided as input and derives a valid BIC code based on the
logic specified by SWIFT. The service does the following:

1 Retrieves the Country Code and the National Code from the IBAN and validates as
follows:

a Retrieves the country code (the first two characters of the IBAN).
b Finds the record with the corresponding IBAN Country_Code in the IS list.

c Uses the bank identifier position and IBAN national ID length fields to establish
the start position and the length of the data to extract within the IBAN.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 183

A Services

d Applies these parameters to the IBAN to extract the IBAN_National_Id.
2 Retrieves the BIC issued with the IBAN, as follows:

a Searches the IBAN_Country_Code and Unique_IBAN_National_Id fields that
contain the values from step 1.

b The record retrieved from the IBAN_BIC_Code and IBAN_ Branch_Code fields
contains the BIC to be used together with the IBAN.

Input Parameters

IBAN

Output Parameters

String IBAN of the financial institution.

Country_Code
IBAN_National_Id
IBAN_Country_Cod

e
Unique_IBAN_Nati

onal_Id
BIC_Code
branchCode

IBAN_BIC_Code
IBAN_Branch_Code

Routing_BIC_Code
Routing_Branch_Co
de

error

errorMessage

String Country code of the financial institution retrieved from
the IBAN (the first two characters of the IBAN).

String The national identifier of the financial institution retrieved
from the IBAN.

String Country code prefix of the IBAN of the financial
institution.

String IBAN National ID. For search purposes, the value is
unique in the data file per IBAN_Country_Code.

String BIC code of the financial institution, country, or location
code).

String Branch code of the financial institution that corresponds to
the BIC_Code.

String The BIC code that corresponds to the IBAN.

String Branch code of the financial institution that corresponds to
the IBAN_BIC_Code.

String The routing or processing BIC to which the payment must
be sent.

String Branch code of the financial institution that corresponds to
the Routing_BIC_Code.

String Specifies whether an error occurred. Valid values: yes and
no.

String Specifies the error message if an error occurs.

184

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.bic:generatelBAN

This service generates the IBAN from the input parameters, based on the following logic:
1 IntheISlist, it finds the IBAN structure for the country.

2 Inthe Bl list, it finds the bank's national code and the BIC corresponding to the IBAN.
3 It constructs the BBAN (Basic Bank Account Number).

4 Tt constructs the IBAN by adding the country and check digits.

Input Parameters

Country_Code String Country code of the financial institution retrieved from
the IBAN (the first two characters of the IBAN).

Institution_Name String Name of the financial institution.

City_Heading String City in which the financial institution is located.

Account_Number String Account number of the financial institution.

Output Parameters

IBAN String IBAN of the financial institution.

BBAN String BBAN of the financial institution.

errorMessage String Specifies the error message if an error occurs.

error String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.bic:getBICInfo

This service retrieves BIC information from the database based on the specified criteria.

Input Parameters

code String BIC code of the financial institution. Specify a partial
string using %partial strings.

bicKey String BIC key of the financial institution.

institution String Name of the financial institution.

branch String Name of the financial institution's branch.

city String City in which the financial institution is located.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 185

A Services

modFlag String BIC modifier flag for the financial institution, which
identifies the BIC records added, updated, and deleted since the
last update. Valid values:

B A, Addition.
B U. Unchanged.
B M. Modified.
location String Location of the financial institution.

countryName String Country in which the financial institution is located.

Output Parameters

count String Specifies the number of BIC records returned in the
search.

biclnfo Document Reference List BIC records specifying the search criteria.

errorMessage String Specifies the error message, if an error occurs.

error String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.bic:getBICPlusinfo

This service retrieves BICPlus information from the database, based on the specified
criteria.

Input Parameters

code String BIC code of the financial institution. Specify a partial
string using %partial string.

bicKey String BIC key of the financial institution.

institution String Name of the financial institution.

branch String Name of the financial institution's branch.

city String City in which the financial institution is located.

modFlag String BIC modifier flag for the financial institution, which

identifies the BIC records added, updated, and deleted since the
last update. Valid values:

B A Addition.
B U. Unchanged.
B M. Modified.

location String Location of the financial institution.

186 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

countryName

Output Parameters

String Country in which the financial institution is located.

count

IBANInfo
errorMessage

error

String Specifies the number of BIC records returned in the
search.

Document Reference List BIC records specifying the search criteria.
String Specifies the error message if an error occurs.

String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.bic:insertIBANList

This service imports the BICPlusIBAN list into the database.

Input Parameters

filename

Output Parameters

String Fully qualified path and file name of the IBAN list to
import, for example, c:\bic\sample\BIDELTA_20100202.txt.

errorMessage

error

String Specifies the error message if an error occurs.

String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.bic:insertISList

This service imports the IS list into the database.

Input Parameters

filename

Output Parameters

String Fully qualified path and file name of the IS list you want to
import, for example, c:\bic\sample\IS_20071103.txt.

errorMessage

error

String Specifies the error message if an error occurs.

String Specifies whether an error occurred. Valid values: yes and
no.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 187

A Services

wm.fin.bic:insertSRList

This service imports a SEPA Routing list into the database.

Input Parameters

filename String Fully qualified path and file name of the SR list you want
to import, for example, c:\bic\sample\SR_20990101.txt

Output Parameters

errorMessage String Specifies the error message if an error occurs.
error String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.bic:validateBankID

This service validates the National Code for a financial institution, as follows:
1 Retrieves the country code (the first two characters) from the IBAN.
2 Retrieves the Unique_ IBAN_National_Id from the IBAN using the IS list.

3 In the BI (BICPlusIBAN) list, searches the row using the IBAN_Country_Code and the
Unique_IBAN_National_Id as search criteria.

4 If the row exists, the national code is valid.

Input Parameters

IBAN String IBAN of the financial institution.

Output Parameters

output String Specifies whether the validation succeeded. Valid values:
true and false.

errorMessage String Specifies the error message, if an error occurs.

error String Specifies whether an error occurred. Valid values: yes and
no.

188 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.bic:validateBICCode

This service validates the BIC code for a financial institution, as follows:

1 Splits the BIC into a BIC_Code (the first 8 characters) and a branchCode (characters 9 to
11). If the branch code is empty;, it substitutes it with XXX.

2 In the BI (BICPlusIBAN) list, searches for the BIC_Code and branchCode in the data file.
3 If arecord is found, the BIC is valid.

Input Parameters

bicCode String BIC code of the financial institution.

Output Parameters

output String Specifies if the validation succeeded. Valid values: true
and false.

errorMessage String Specifies the error message if an error occurs.

error String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.bic:validateBICIBAN

This service validates the BIC code and IBAN combination for a financial institution, as
follows:

1 Finds the PARENT BANK CODE from the IBAN:
a Retrieves the Country_Code from the IBAN (the first two characters).
b Retrieves the Unique_IBAN_National_Id from the IBAN using the IS list.

¢ Searches the BI (BICPlusIBAN) list using the IBAN Country_Code and the
Unique_IBAN_National_Id as search criteria.

d Retrieves the PARENT BANK CODE from the row found it the file.
2 Finds the PARENT BANK CODE from the BI (BICPlusIBAN) list:

a Splits the BIC into a bicCode (the first 8 characters) and a branchCode (characters 9
to 11). If the branchCode is empty, substitutes it with XXX.

b In the Bl list, finds the bicCode and the branchCode.
¢ Retrieves the PARENT BANK CODE from the row found in the file.

3 Compares the parent bank codes found in the first two steps. If the PARENT BIC
CODE:s are the same, then the BIC and the IBAN belong to the same institution.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 189

A Services

Note: If no matching record is found, it does not necessarily mean that the IBAN/BIC
combination is invalid. Determine if any of the following situations apply:

® The account servicing institution issues IBANs along with the BIC of another
institution.

® The account servicing institution has multiple BIC codes with different bank
codes (first 4 characters).

Input Parameters

bicCode String BIC code of the financial institution.
IBAN String IBAN of the financial institution.

Output Parameters

output String Specifies whether the validation succeeded. Valid values:
true and false.

errorMessage String Specifies the error message if an error occurs.

error String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.bic:BICInfo

Record structure identifying the BIC record retrieved from the database. The document
specifies the result from executing the wm.fin.bic.getBICInfo service.

wm.fin.dev Folder

This folder contains design-time services used for the install and configuration of new
SWIFT FIN messages.

wm.fin.dev:importFINItems

This service imports, configures, and creates all items needed in a SWIFT message
transaction. This includes the IS document, DFD, parse template, TN document type, TN
processing rule, and TN TPA.

Input Parameters

msgType String SWIFT message type, for example, 502.

version String FIN version (for example, nov10).

190 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

format String Optional. The format of the generated blocks and fields for
the input SWIFT message. Valid values are:

B TAG_BIZNAME (default). SWIFT message tag followed by the
business name specified in the message DFD, for example,
23G_Function of the Message.

B TAGONLY. SWIFT message tag only. for example, 23G:.

B BIZNAMEONLY. Business name specified in the message DFD,
for example, Function of the Message.

B XMLTAG. XML-compatible tag name. This format cannot
contain colons or tags that begin with a number, for
example, F23G.

subfieldFlag String Specifies whether to parse fields to the subfield level in the
IS Document Type generated for this SWIFT FIN message. Valid
values:

B true (default). Parse to the subfield level:

= For inbound messages, removes the SWIFT delimiter (/)
between subfields.

® For outbound messages, adds the SWIFT delimiter (/)
between subfields.

B false. Parse to the field level.

createDocType String Optional. Indicates whether to create and insert a TN
document type for this message. The TN document type is used
to recognize an incoming message. Valid values: true or false.

createProcessing String Optional. Indicates whether to create a Trading Networks
processing rule for this message. After the message is

Rule recognized, the processing rule specifies how the message
should be processed. Valid values: true or false.
createTPA String Optional. Indicates whether to create a Trading Networks

TPA for this message. This specifies specific variables used in
WmPFIN for processing and validation. Valid values: true or
false.

Output Parameters

None.

wm.fin.dfd Folder

This folder contains services related to the loading and use of the FIN Data Field
Dictionary (DFD).

webMethods SWIFT Module Installation and User’s Guide Version 7.1 191

A Services

wm.fin.dfd:convertBizNameFormat

This service converts FIN IData from a specified format to TAGONLY format and merges
subfields into a FIN field.

Input Parameters

finlData

msgType

version

fromFormat

subfieldFlag

Output Parameters

Document FIN IData in the format specified in the fromFormat
input string.

String SWIFT message type, for example, 502.

String Version number of the SWIFT message record, for
example, nov10.

String The format of the generated blocks and fields for the input
SWIFT message. Valid values:

B TAG_BIZNAME (default). SWIFT message tag followed by the
business name specified in the message DFD, for example,
23G_Function of the Message.

B TAGONLY. SWIFT message tag only, for example, 23G:.

B BIZNAMEONLY. Business name specified in the message DFD,
for example, Function of the Message.

B XMLTAG. XML-compatible tag name. This format cannot
contain colons or tags that begin with a number, for
example, F23G.

String Optional. Specifies whether to parse the fields in the input
finlData to the subfield level. Valid values:

B true (default). Parse to the subfield level:

® For inbound messages, removes the SWIFT delimiter (/)
between subfields.

® For outbound messages, adds the SWIFT delimiter (/)
between subfields.

B false. Parse to the field level.

convertedFinlData

Document Converted FIN IData in the format of TAGONLY.

192

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.dfd:convertTagFormat

This service converts FIN IData from TAGONLY to the specified format and parses whole
tields into subfields.

Input Parameters

finlData Document FIN IData in the format specified in the fromFormat
input string.

msgType String SWIFT message type, for example, 502.

version String Version number of the SWIFT message record being used,

for example, nov10.

toFormat String The format of the generated blocks and fields for the input
SWIFT message. Valid values:

B TAG_BIZNAME (default). SWIFT message tag followed by the
business name specified in the message DFD, for example,
23G_Function of the Message.

B TAGONLY. SWIFT message tag only. for example, 236G:.

B BIZNAMEONLY. Business name specified in the message DFD,
for example, Function of the Message.

B XMLTAG. XML-compatible tag name. This format cannot
contain colons or tags that begin with a number, for
example, F23G.

subfieldFlag String Optional. Specifies whether to parse the fields in the input
finlData to the subfield level. Valid values:

B true (default). Parse to the subfield level.

® For inbound messages, removes the SWIFT delimiter (/)
between subfields.

m For outbound messages, adds the SWIFT delimiter (/)
between subfields.

B false. Parse to the field level.
userParameters Document Optional. User parameters providing configuration

information for the message.

Output Parameters

convertedFinlData Document Converted FIN IData in the format specified in the
fromFormat input string.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 193

A Services

wm.fin.dfd:getDFDList

This service displays a list of DFDs loaded into the system.

Input Parameters

None.

Output Parameters

dfdList StringList Conditional. List of DFDs loaded into the system in
<dfd name>_<dfd version> format, for example, 541_nov10.

wm.fin.dfd:loadDFD

This service loads a FIN DFD into memory.

Input Parameters

msgType String SWIFT message type, for example, 541.

version String Optional. Version number of the SWIFT message record
being used, for example, nov10.

Output Parameters

None.

wm.fin.dfd:unloadDFD

This service unloads a FIN DFD from memory.

Input Parameters

msgType String SWIFT message type, for example, 541.

version String Optional. Version number of the SWIFT message record
being used, for example, nov10.

Output Parameters

None.

194 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.dfd:unloadDFDs

This service unloads all FIN DFDs from memory.

Input Parameters

None.

Output Parameters

None.

wm.fin.doc Folder

This folder contains the document structures used to represent particular sections of
SWIFT FIN messages, such as the header and trailer structures, and their fields. Also
within this folder are the generic structure definitions for incoming and outgoing SWIFT
FIN messages, where the data record structure (known as block 4 in SWIFT FIN
messages) is left as an open record. The wm.fin.dev:importFINItems service (in the wm.fin.dev
folder) generates these items. This folder also includes publishable IS document types
that are used to send and receive SWIFT FIN messages, and IS document types that are
used to populate values for a given TPA.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 195

A Services

wm.fin.doc:FINIData_Input

Record structure defining the fields of an incoming SWIFT message. B4 is left as an open
record and can be created based on the particular message type and version.

wm.fin.doc:FINIData_Output

Record structure defining the fields of an outgoing SWIFT message. B4 is left as open
record and can be created based on the particular message type and version.

wm.fin.doc:FINInboundMessage

Deprecated. Publishable document. SWIFT FIN messages received via AFT or MQ Series
are mapped into this document. This document is then published to webMethods Broker
or Integration Server where it is processed by the wm.fin.trp:FINInboundMessageTrigger and
wm.fin.trp:receive services.

Usage Notes

This document is deprecated.

wm.fin.doc:FINOutboundMessage

Deprecated. Publishable document. SWIFT FIN messages sent via AFT or MQSeries are
mapped into this document and published to webMethods Broker or Integration Server.

B If Transport = MQ, wm.fin.transport. MQSeries:MQSeriesPutTrigger subscribes to and processes
this document. This trigger is deprecated.

B If Transport = AFT, wm.fin.transport AFT:AFTOutboundTrigger subscribes to and processes this
document. This trigger is deprecated.

Usage Notes

This document is deprecated.

Note: Please see webMethods SWIFT Module Samples Guide for information about sending
SWIFT FIN messages using the AFT or MQSeries.

196 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.doc:MessageHeader

Non-publishable document. Data used to populate to header blocks (B1,B2,B3 and B5) in
the outgoing SWIFT message.

wm.fin.doc:UserParameters

Non- publishable document. TPA information to be used while sending and receiving
SWIFT FIN messages.

wm.fin.doc.catF Folder

The record definitions in this folder describe the record structures that represent the body
of the FIN acknowledgement.

wm.fin.doc.catF:MTF21

Record structure defining the fields of the body of the FIN Acknowledgement (F21).

wm.fin.doc.header Folder

The record definitions within this folder describe the record structures used to represent
the three header sections of a SWIFT message; the Basic Header (known as block 1 in
SWIFT FIN messages), the Application Header (block 2, in both incoming and outgoing
message format), and User Header (block 3).

wm.fin.doc.header:ApplicationHeader_Input

Record structure defining the fields of the Application Header (block 2) on an incoming
SWIFT message.

wm.fin.doc.header:ApplicationHeader_Output

Record structure defining the fields of the Application Header (block 2) on an outgoing
SWIFT message.

wm.fin.doc.header:BasicHeader

Record structure defining the fields of the Basic Header (block 1) of a SWIFT message.

wm.fin.doc.header:UserHeader

Record structure defining the fields of the User Header (block 3) of a SWIFT message.

wm.fin.doc.trailer Folder

webMethods SWIFT Module Installation and User’s Guide Version 7.1 197

A Services

The record definitions within this folder describe the record structures used to represent
the trailer section of a SWIFT message, known as block 5.

wm.fin.doc.trailer: Trailer

Record structure defining the fields representing the trailer section (block 5) of a SWIFT
message.

wm.fin.format Folder

This folder contains format-related services. They are used in converting formats, such as
a SWIFT message format, into a FIN IData.

wm.fin.format:conformFINIData

This service conforms (rearranges) FIN IData into the correct structure based on the B4 IS
document.

Input Parameters

inputFINIData Document Input bound FIN IData (must include B4 block).

isDocument String Fully-qualified IS document name to which the
inputFINIData B4 block conforms, for example,
wm.fin.doc.novl10.cat5:MT502.

Output Parameters

outputFINIData Document Output bound conformed FIN IData.

wm.fin.format:conformiData

This service conforms (rearranges) FIN IData into the correct structure based on the B4 IS
document.

Input Parameters

finlData Document Input bound FIN IData (must include B4 block).

isDocument String Fully-qualified IS document name to which the finIData B4
block conforms, for example, wn.fin.doc.nov10.cat5:MT502.

198 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Output Parameters

finlData Document Conditional. Output bound conformed IData.

wm.fin.format:convertFINBlock4TolSDoc

This service maps the contents of a formatted block 4 MT message from the back-end MT
IS document type.

Input Parameters

finMsgBlock4 String Block 4 of a FIN message according to the SWIFT
specification.

version String Optional. Version number of the SWIFT message record
being used, for example, nov10.

msgType String Optional. SWIFT message type identifier, for example, 199.

relaxed String Optional. Formats the new line or line feed characters to

SWIFT specific control characters “\r\n”.

Note: As per SWIFT specification the path separator for all the
lines in block 4 is “\r\n”. “\r”- is specified as the line feed
character and “\n”- as the new line character.

Output Parameters

MTISDoc Document Back-end MT IS document type.

wm.fin.format:convertFINTolData

This service converts a SWIFT message into FIN IData. It loads a “parse” template into
memory to create the correct structure.

Input Parameters

finMsg String Valid SWIFT message.

version String Optional. Version number of the SWIFT message record
being used, for example, nov10.

Note: When using this service to convert a SWIFT
acknowledgement (ACK) or negative acknowledgement
(NACK) to an IData object, do not specify the version input
variable because ACKs and NACKs are version neutral.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 199

A Services

msgType String SWIFT message type identifier, for example, 541.

relaxed String Optional. Valid values are true and false. Formats the
new line or line feed characters to SWIFT specific control
characters “\r\n”.

Note: As per SWIFT specification the path separator for all the
lines in block 4 is “\r\n”. “\r”- is specified as the line feed
character and “\n”- as the new line character.

Output Parameters

finlData Document Conditional. FIN IData in the format specified.

wm.fin.format:convertiDataToFIN

This service converts FIN IData into a SWIFT message.

Input Parameters

finlData Document FIN IData in the format specified.

Output Parameters

FINmsg String Conditional. Output SWIFT message.

wm.fin.format:convertiISMTDocToFINFormat

This service creates block 4 of an MT message in FIN format from the back-end MT IS
document type.

Input Parameters

ISMTDoc Document An instance of an MT FIN document, for example,
wm.fin.doc.nov10.catl:MT199.

Output Parameters

finFormattedBlock4 String Conditional. Flat file structure of block 4 according to the
SWIFT specification.

200 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.format:flushTemplateCache

This service clears “parse” templates from memory.

Input Parameters

None.

Output Parameters

None.

wm.fin.format:xmlTolData

This service converts an XML-formatted SWIFT message into IData.

Input Parameters

xmlString String XML string.

Output Parameters

outputlData Document Conditional. Output FIN IData.

wm.fin.init Folder

The services in this folder either initialize or de-initialize FIN packages on startup and
shutdown of webMethods Integration Server.

wm.fin.init:startup

This service initializes DSP user interface and resource bundles and configures the
wmFIN package for run-time.

Input Parameters

None.

Output Parameters

None.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 201

A Services

wm.fin.init:shutdown

This service de-initializes the WmFIN package when Integration Server shuts down.

Input Parameters

None.

Output Parameters

None.

wm.fin.map Folder

The services in this folder provide an easy framework for creating the header and trailer
sections of SWIFT FIN messages for outbound messages (to be sent to SWIFT). The input
for all services is the mandatory header or trailer section.

wm.fin.map:mapApplicationBlockHeader

This service maps the input variables into a default FIN application header.

Input Parameters

userParameters Document Reference FIN transport user variables.

Output Parameters

B2 Document Reference Application header IData.

Usage Notes

This service replaces the deprecated servicewm.fin.map:mapApplicationHeader.

wm.fin.map:mapApplicationHeader

Deprecated. Maps the input variables into a default FIN application header.

Input Parameters

userParameters Document Reference FIN transport user variables.

bizEnv Document Reference TN business envelope. This service derives
the branch information and uses it to populate the receiver field
in the address.

202 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Output Parameters

B2 Document Reference Application header IData.

Usage Notes

This service is deprecated and is replaced by wm.fin.map:mapApplicationBlockHeader.

wm.fin.map:mapBasicBlockHeader

This service maps the input variables into a default FIN application header.

Input Parameters

userParameters Document Reference FIN transport user variables.

Output Parameters

B1 Document Reference Basic header IData.

Usage Notes

This service replaces the deprecated service wm.fin.map:mapBasicHeader.

wm.fin.map:mapBasicHeader

Deprecated. This service maps the input variables into a default FIN application header.

Input Parameters

userParameters Document Reference FIN transport user variables.

bizEnv Document Reference TN business envelope. This service extracts
the sender information and uses it to populate the LT
information in the header.

Output Parameters

B1 Document Reference Basic header IData.

Usage Notes

This service is deprecated and is replaced by wm.fin.map:mapBasicBlockHeader.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 203

A Services

wm.fin.map:mapOutbound

Deprecated. This service maps the input variables into finIData.

Input Parameters

finText Document Block 4 content of the FIN message.

userParameters Document Reference FIN transport user variables.

Output Parameters

finlData Document Reference FIN IData in the format specified.

Usage Notes

This service is deprecated and is replaced by wm.fin.map:mapOutboundMessage.

wm.fin.map:mapOutboundMessage

This service maps the input variables into finIData.

Input Parameters

finText Document Block 4 content of the FIN message.

userParameters Document Reference FIN transport user variables.

Output Parameters

finlData Document Reference FIN IData in the format specified.

Usage Notes

This service replaces the deprecated service wm.fin.map:mapOutbound.

wm.fin.map:mapTrailer

This service creates a trailer record. For outbound SWIFT messages, this record does not
need to be populated, so this service currently creates an empty trailer record.

Input Parameters

userParameters Document Reference FIN transport user variables.
Output Parameters
B5 Document Reference Trailer IData.

204 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.map:mapUACK

This service maps the SWIFT acknowledgement to finIData.

Input Parameters

accept-reject String Acknowledgement status of the message.
rejection-reason String Optional. Reason for a negative acknowledgement.
mur String Optional. Unique identifier of the FIN message for which

this acknowledgement is received.

Output Parameters

finlData Document Reference FIN IData in the format specified.

wm.fin.map:mapUserBlockHeader

This service maps the input variables into a default FIN application header.

Input Parameters

userParameters Document Reference FIN transport user variables.

Output Parameters

B3 Document Reference User header IData.

Usage Notes

This service replaces the deprecated service wm.fin.map:mapUserHeader.

wm.fin.map:mapUserHeader

Deprecated. Maps the input variables into a default FIN application header.

Input Parameters

userParameters Document Reference FIN transport user variables.

bizEnv Document Reference Optional. TN business envelope. This service
extracts the conversation ID (if provided) and uses it to populate
the MUR for the FIN message.

Output Parameters

B3 Document Reference User header IData.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 205

A Services

Usage Notes

This service is deprecated and is replaced by wm.fin.map:mapUserBlockHeader.

wm.fin.marketPractice Folder

This folder contains common services that support Market Practices for some Category 5
messages. The services in this package are for internal use only.

wm.fin.rules Folder

The services in this folder provide utility functions that are used in the implementation of
network validation rules.

wm.fin.rules:checkCodeOrder

This service specifies whether codes are in the correct order.

Input Parameters

codeList String List The input code list.

codeOrder String List The correct order of codes.

Output Parameters

isCodeOrderValid String Specifies whether the code list is valid. Valid values: true
or false.

wm.fin.rules:contains

This service specifies whether a key is contained in the code list.

Input Parameters

codeList String List The input code list.
key String Key that may be in the code list.

Output Parameters

keyExists String Specifies whether the key exists in the code list. Valid
values: true or false.

206 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.rules:getDuplicateCodeList

This service returns all codes that are duplicates in the code list.

Input Parameters

codeList String List Optional. The input code list.

Output Parameters

duplicateCodeList String List Conditional. All duplicate codes in the input codeList.

wm.fin.rules:setErrorDocument

This service returns the appropriate error document from the specified variables.

Input Parameters

key String Error message key. This is usually a FIN error message
code.

path String Path of the error in the message, for example, B4/SBB/57D:.

data String Data where the error occurs.

Output Parameters

errors Document List Error array with the error appended to the end.

wm.fin.sepa Folder

This folder contains SEPA-related services used to derive or validate data against the
SEPA Routing Directory.

wm.fin.sepa:checkOperationalReadiness
This service validates a BIC's operational readiness to ensure that a BIC is ready to receive
SEPA payment instructions for a particular scheme, as follows:

1 Splits the BIC into a BIC code (the first 8 characters) and a branch code (characters 9 to
11). If the branch code is empty, substitutes it with XXX.

2 Searches the data file with the BIC code, branch code, service level (for example,
SEPA), and scheme instrument.

3 Ifno record is found for a specific branch code, it repeats the search with XXX in the
branch code.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 207

A Services

If at least one record is found with an operational readiness date older than the
current date, and with an active validity period, the BIC is ready to accept payment
instructions for the service level/scheme instrument and can receive payment
instructions through the payment channel(s).

If no record is found, you must investigate manually to validate that the counterpart
bank is ready to accept SEPA payment instructions.

Input Parameters

bicCode String BIC code of the financial institution.
serviceLevel String The SEPA service level.
schemalns String The scheme instruments within the SEPA service level for

which data is collected and published.

Output Parameters

isReady String Specifies if the input BIC code is operationally ready for
the input scheme. Valid values are true and false.

message String Specifies the reason if isReady is false.

errorMessage String Specifies the error message if an error occurs.

error String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.sepa:getAvailablePaymentChannels

This service identifies the available payment channels for a BIC code, as follows:

1

Splits the BIC into a BIC code (the first 8 characters) and a branch code (characters 9 to
11). If the branch code is empty, substitutes it with XXX.

Searches the data file with the BIC code, branch code, service level (for example,
SEPA), and scheme instrument.

If no record is found for a specific branch code, then repeats the search with XXX in the
branch code.

The search may return multiple rows if the counterpart bank is reachable through
multiple payment channels.

® The PaymentChannellD field in each retrieved record provides the list of possible
payment channels.

m The ValidFrom and ValidTo date fields may restrict the validity of the entries.

If no record is found, you must investigate manually to validate that the counterpart
bank is ready to accept SEPA payment instructions, and determine the payment
channels through which you can reach the bank.

208

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Note: If no available payment channels are found, the service returns the message: “No
Available Payment Channel found.”

Input Parameters

bicCode
serviceLevel

schemalns

Output Parameters

String BIC code of the financial institution.
String The SEPA service level.

String The scheme instruments within the SEPA service level for
which data is collected and published.

message

PaymentChannellnfo
PaymentChannelID
ValidFrom, ValidTo
errorMessage

error

String Conditional. Indicates that there is no available payment
channel.

Document List The available payment channel.

String The ID of the available payment channel.

String Show the validity of the available payment channel.
String Specifies the error message, if an error occurs.

String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.sepa:getOtherPaymentChannel

This service identifies the payment channels available to the financial institution with the
input BIC code, using an intermediary institution, as follows:

1 Retrieves the BIC from the intermediary institution BIC field.

2 Splits the intermediary institution BIC into a BIC code (the first 8 characters) and a
branch code (characters 9 to 11). If the branch code is empty, substitutes it with XXX.

3 Searches the data file with the BIC code, branch code, service level (for example,
SEPA), and scheme instrument.

4 If no record is found for a specific branch code, repeats the search with XXX in the

branch code.

The search may return multiple rows if the intermediary institution is reachable
through multiple payment channels.

m The PaymentChannellD field in each retrieved record provides the list of possible
payment channels through which the intermediary institution BIC is reachable.

m The ValidFrom and ValidIo date fields restrict the validity of the entries.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 209

A Services

Input Parameters

bicCode
serviceLevel

schemalns

Output Parameters

String BIC code of the financial institution.
String The SEPA service level.

String The scheme instruments within the SEPA service level for
which data is collected and published.

message

PaymentChannellnfo
PaymentChannelID
ValidFrom, ValidTo
errorMessage

error

String Conditional. Indicates that there is no available payment
channel.

Document List The available payment channel.

String The ID of the available payment channel.

String Indicates the validity of the available payment channels.
String Specifies the error message, if an error occurs.

String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.sepa:getPreferredPaymentChannel

This service determines whether the counterpart financial institution has specified a
preferred payment channel for receiving payment instructions, as follows:

1 Splits the BIC into a BIC code (the first 8 characters) and a branch code (characters 9 to
11). If the branch code is empty, substitutes it with XXX.

2 Searches the data file with the BIC code, branch code, service level (for example,
SEPA), scheme instrument, and preferred channel flag set to P.

3 Ifnorecord is found for a specific branch code, the service repeats the search with Xxx
in the branch code.

If a record is found, then the PaymentChannelID field in the retrieved record provides
the preferred payment channel. The ValidFrom and ValidTo date fields restrict the
validity of the entry.

If no record is found, then there is no preferred channel.

Note: If no available payment channels are found the output for the service contains the
following message: “No Preferred Payment Channel found.”

Input Parameters

bicCode

serviceLevel

String BIC code of the financial institution.

String The SEPA service level.

210

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

schemalns String The scheme instruments within the SEPA service level for

which data is collected and published.

Output Parameters

message String Conditional. Indicates that there is no preferred payment

channel.

PaymentChannellnfo Document List The preferred payment channel.

PaymentChannellD String The ID of the preferred payment channel.

ValidFrom, ValidTo String Show the validity of the preferred payment channel.

errorMessage String Specifies the error message, if an error occurs.
error String Indicates whether an error occurred. Valid values: yes and
no.

wm.fin.sepa:validateAdherenceStatus

This service validates a BIC's adherence status to confirm that an institution has signed an
adherence agreement for a particular scheme and is published in the EPC Register of
Participants (that is, the adherence database).

1

Splits the BIC into a BIC code (the first 8 characters) and a branch code (characters 9 to
11). If the branch code is empty, substitutes it with XXX.

Searches the data file with the BIC code, branch code, service level (for example,
SEPA), and scheme instrument.

If no record is found for a specific branch code, repeats the search with XXX in the
branch code.

If at least one record is found in which the Adherent Institution Flag has the value P
(Published Institution), then the institution has been published in the EPC Register.

If no record is found, you may consult the EPC Register of Participants directly. If the
bank is listed as adherent to the scheme, then the bank may not have registered its
routing information in the SEPA Routing Directory or may not have provided to
SWIFT the institutions' reference BIC as provided on the scheme Adherence
Agreement Schedule form.

Input Parameters

bicCode String BIC code of the financial institution.
serviceLevel String The SEPA service level.
schemalns String The scheme instruments within the SEPA service level for

which data is collected and published.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 211

A Services

Output Parameters

isAdherent String Specifies if the input BIC code adheres to the input
scheme. Valid values are true and false.

message String Specifies the reason if isAdherent is false.

errorMessage String Specifies the error message if an error occurs.

error String Specifies whether an error occurred. Valid values: yes and
no.

wm.fin.transport Folder

This folder contains the services needed to exchange messages with SWIFT using
Automated File Transfer (AFT) and MQSeries.

wm.fin.transport.AFT Folder

The services in this folder send and receive messages using Automated File Transfer.

wm.fin.transport. AFT:AFTOutboundTrigger

Deprecated. This trigger subscribes to outbound SWIFT FIN messages when the transport
parameter in the message TPA is set to AFT. The trigger invokes the
wm.fin.transport. AFT:processOutboundFile service to process the outbound SWIFT message.

wm.fin.transport. AFT.generateUniqueFileName

This service generates a unique file name.

Input Parameters

folder String The folder in which the file needs to be created.

extension String Optional. The extension to use for the generated file name.
If no extension has been specified, the default extension is . inp.

Output Parameters

fileName String Generated unique file name.

212 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.transport. AFT:processinboundFile

Deprecated. The flat file listener invokes this service to process incoming SWIFT FIN
messages received via AFT. It then invokes wm.fin.trp:receiveto process each of the SWIFT
FIN messages in the inbound batch file.

Input Parameters

ffdata java.io.InputStream Input stream to the file received via AFT.

Output Parameters

None.

Usage Notes

This service is deprecated and is replaced by wm.fin.transport. AFT:processincomingFile.

wm.fin.transport. AFT:processincomingFile

This service is invoked to process the SWIFT FIN flat file message. This service breaks the
batch input file into the individual SWIFT FIN messages. It then invokes
wm.fin.trp:receiveMessageto process each of the SWIFT FIN messages in the inbound batch
file.

Input Parameters

ffdata java.io.InputStream Input stream to the file received via AFT.

Output Parameters

None.

Usage Notes

This service replaces the deprecated service, wm.fin.transport. AFT:processinboundFile.

wm.fin.transport. AFT:processincomingMessage

This service parses incoming SWIFT FIN messages separated with special characters and
outputs the SWIFT FIN messages as a string array with the special characters stripped.

Input Parameters

ffdata java.io.InputStream Input stream to the file received via AFT.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 213

A Services

Output Parameters

finMessage String A string list containing the individual SWIFT FIN
messages with the special characters stripped.

wm.fin.transport. AFT:processOutboundFile

Deprecated. This service generates a unique file name and writes the outbound SWIFT
message to the file in the folder specified in the TPA.

Input Parameters

ffdata java.io.InputStream Input stream to the file received via AFT.

wm.fin.doc:FINOutb Document Reference The document to which this service

ound Message subscribes when the transport parameter in the message TPA is
set to AFT.

Output Parameters

None.

Usage Notes

This service is deprecated and is replaced by wm.fin.transport. AFT:processOutgoingFile.

wm.fin.transport. AFT:processOutgoingFile

This service generates a unique file name and writes the outbound SWIFT message to the
file in the folder specified in the TPA.

Input Parameters

finMsg String The SWIFT FIN message in flat file format.
ProcessUser Document Reference Configuration document providing the
Parameters required information to process the outbound file.

Output Parameters

None.

Usage Notes

This service replaces the deprecated service, wm.fin.transport. AFT:processOutboundFile.

wm.fin.transport.MQSeries

This folder contains services to send and receive SWIFT FIN messages from MQ Series.

214 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.transport. MQSeries:getListenerService

Deprecated. This service retrieves SWIFT FIN messages from a specified MQSeries
queue. This service strips out extraneous information in the SWIFT message and
publishes the actual SWIFT message, to be processed further by wm fin.trp:receive. The
wm.fin.trp:receive service subscribes to, processes, and validates the message, after which
the service either passes the resulting TN document type to the Process Engine or to the
specified Trading Networks processing rule. The user must specify this service as the
Message Service when creating the WebSphere MQ-to-IS message handler.

Input Parameters

msgbody String SWIFT message retrieved off the specified WebSphere MQ
queue.

Output Parameters

None.

Usage Notes

This service is deprecated and is replaced by
wm.fin.transport. MQSeries:getMQSeriesListenerService.

wm.fin.transport. MQSeries:getMQSeriesListenerService

This service retrieves SWIFT FIN messages from a specified MQSeries queue, removes
extraneous information in the SWIFT message, and publishes the actual SWIFT message
for further processing by the wm.fin.trp:receiveMessage service.

Input Parameters

msgbody String SWIFT message retrieved from the specified WebSphere
MQ queue.

Output Parameters

None.

Usage Notes

This service replaces the deprecated service, wm.fin.transport. MQSeries:getListenerService.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 215

A Services

wm.fin.transport.MQSeries:MQSeriesPutTrigger

Deprecated. This trigger subscribes to outbound SWIFT FIN messages when the transport
parameter in the message TPA is set to MQ. The trigger then invokes the service,
wm.fin.transport. MQSeries:put, to put the outbound SWIFT message into the specified
WebSphere MQ queue.

Input Parameters

None.

Output Parameters

None.

Usage Notes

This service is deprecated.

wm.fin.transport. MQSeries:put

Deprecated. This service puts the outbound SWIFT message in a MQ Series queue by
invoking the “put” message handler service created by the user and specified in the
message TPA.

Input Parameters

FINOutboundMessa ~ Document Reference The document to which this service
ge subscribes when the transport parameter in the message TPA is
set to MQ.

Output Parameters

None.

Usage Notes

This service is deprecated and is replaced by wm.fin.transport. MQSeries:putMessage.

wm.fin.transport.MQSeries:putMessage

This service invokes the “put” message handler service (the user-created service specified
in the corresponding message TPA), and puts the outbound SWIFT message in a MQ
Series queue.

Input Parameters

finMsg String SWIFT FIN message in the flat file format.

216 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

ProcessUser Document Reference Configuration document providing the
Parameters required information to process the outbound file.

Output Parameters

None.

Usage Notes

This service replaces the deprecated service, wm.fin.transport. MQSeries:put.

wm.fin.transport.property

This folder contains services to retrieve properties defined for publishing SWIFT FIN
messages.

wm.fin.transport.property:.getProperty

This service returns the property value specified in Integration Server_directory\ packages\
WmFIN\ config\ finTransport.cnf file.

Input Parameters

propertyName String Property name specified in the finTransport.cnf file.

Output Parameters

value String Value of the property name specified in the
finTransport.cnf file.

wm.fin.transport.property:listProperties

This service returns all the properties specified in IntegrationServer_directory\ packages\
WmFIN\ config\ finTransport.cnf file.

Input Parameters

None.

Output Parameters

properties Document List of all the properties and their values specified in
the finTransport.cnf file.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 217

A Services

wm.fin.transport.Test

This folder contains services, triggers and publishable documents to be used with the
SWIFT Module samples. For information about the SWIFT Module samples, see
webMethods SWIFT Module Samples Guide.

wm.fin.transport.Test:FINSampleInboundMessage

Deprecated. A publishable IS document that represents an inbound SWIFT message,
used with the SWIFT Module samples.

Input Parameters

None.

Output Parameters

None.

Usage Notes

This service is deprecated.

wm.fin.transport.Test:FINSampleInboundMessageTrigger

Deprecated. This service subscribes to the FINSamplelnboundMessage document that the
wm.fin.transport. Test:processFinMsg service publishes. This trigger invokes the sample service,
wm.fin.sample:receive, to process the incoming SWIFT message.

Input Parameters

wm.fin.doc:FINSamp Document The document to which this service subscribes when
leInboundMessage the transport parameter in the message TPA is set to Test.

Output Parameters

wm.fin.doc:FINSamp Document The document to which this service subscribes when
le OutboundMessage the transport parameter in the message TPA is set to Test.

Usage Notes

This service is deprecated.

218 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.transport.Test:FINSampleOutboundMessageTrigger

Deprecated. This service subscribes to outbound SWIFT FIN messages when the transport
parameter in the message TPA is set to Test. This trigger invokes
wm.fin.transport. Test:processFinMsg to process outbound SWIFT messages.

Input Parameters

wm.fin.doc:FINSamp Document The document to which this service subscribes when
leInboundMessage the transport parameter in the message TPA is set to Test.

Output Parameters

wm.fin.doc:FINSamp Document The document to which this service subscribes when
leOutboundMessage the transport parameter in the message TPA is set to Test.

Usage Notes

This service is deprecated.

wm.fin.transport.Test:processFinMsg

Deprecated. This service receives an outbound SWIFT message and simulates a round-
trip by publishing the same message as an inbound SWIFT message.

wm.fin.transport. Test:FINSampleOutboundMessageTrigger invokes this service when the transport
parameter in the message TPA is set to Test.

Input Parameters

wm.fin.doc:FIN Document The document to which this service subscribes when
OutboundMessage the transport parameter in the message TPA is set to Test.

Output Parameters

None.

Usage Notes

This service is deprecated.

wm.fin.trp Folder

This folder contains two core services that are used in conjunction with Trading
Networks to provide single-point access to send and receive SWIFT FIN messages.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 219

A Services

wm.fin.trp:FINInboundMessageTrigger

Deprecated. This trigger subscribes to the wm.fin.doc:FINInboundMessage service. When a
document is received, this trigger invokes the wm.fin.trp:receive service.

Usage Notes

This service is depricated.

wm.fin.trp:receive

Deprecated. The wm.fin.trp:FINInboundMessageTrigger service triggers this service. This service
receives an incoming FINInboundMessage IData, parses it into a record, and sends it to
Trading Networks for further processing.

Input Parameters

wm.fin.doc:FINInbou Document IData containing the raw SWIFT FIN message to be
ndMessage processed.

Output Parameters

None.

Usage Notes

This service is deprecated and is replaced by wm.fin.trp:receiveMessage.

wm.fin.trp:receiveMessage

This service receives an incoming FINInboundMessage IData, parses it into a record, and
sends it to Trading Networks for further processing. The wm.fin.trp:FINInboundMessageTrigger
service triggers this service to run.

Input Parameters

rawFINMessage String Flat file inbound FIN message.

Output Parameters

None.

Usage Notes

This service replaces the deprecated service, wm.fin.trp:receive.

220 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.trp:send

Deprecated. This service formats IData into a SWIFT FIN message, persists the message
in Trading Networks, and validates it. Once validated, the service sends the message to
SAA, using the transport protocol configured in the TPA for the corresponding message

type.

Input Parameters

finBlock4Doc Document Block 4 of flat file FIN message in IS document format,
for example, wm.fin.doc.nov11.cat5:MT564.
SenderID String Sender ID used to retrieve TPA data from Trading

Networks. Default is unknown.

ReceiverID String Receiver ID used to retrieve the TPA data from Trading
Networks. Default is unknown.

msgType String Type of the FIN message, for example 564.

Output Parameters

None.

Usage Notes

This service is deprecated and is replaced by wm.fin.trp:sendMessage.

wm.fin.trp:sendMessage

This service formats IData into a SWIFT FIN message, persists the message in Trading
Networks, and validates it. Once validated, the service sends the message to SAA, using
the transport protocol configured in the TPA for the corresponding message type.

Input Parameters

finBlock4Doc Document Block 4 of flat file FIN message in IS document format,
for example, wm.fin.doc.novll.cat5:MT564.

SenderID String Sender ID used to retrieve TPA data from Trading
Networks. Default is unknown.

ReceiverID String Receiver ID used to retrieve the TPA data from Trading
Networks. Default is unknown.

msgType String Type of the FIN message, for example 564.

Output Parameters

None.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 221

A Services

Usage Notes

This service replaces the deprecated service, wm.fin.trp:sendMessage.

wm.fin.utils Folder

The services found within this folder are generic utility services providing various
functionality.

wm.fin.utils:generateUniqueldentifier

This service generates a unique identifier. Use the sample services
wm.xmlv2.MT.maps:mapDataPDU and wm.xmlv2.MX.maps:mapDataPDU to populate XMLv2
headers with a unique identifier. SWIFT Module uses this identifier to reconcile
notifications from SAA.

Input Parameters

None.

Output Parameters

uuib String Contains the unique identifier that the service generated.

wm.fin.utils:getFINMessageAndIDs

From a raw SWIFT message, this service recognizes and extracts the sender, receiver and
message type.

Input Parameters

rawFINMessage String Raw SWIFT message.

Output Parameters

finMessage Document Contains SWIFT Message and indicates whether
message is an acknowledgement.

internal SenderID String Trading Networks Internal Sender ID.

internalReceiver]D String Trading Networks Internal Receiver ID.

msgType String SWIFT message type.

222 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.fin.validation Folder

This folder contains validation-related services. They are used to facilitate the validation
of a SWIFT message.

wm.fin.validation:getErrorMessage

This service returns an appropriate SWIFT message for a key.

Input Parameters

key String Error key.

Output Parameters

errorMessage String FIN error message.

wm.fin.validation:validateFinMsg

Parses and validates a SWIFT message.

Input Parameters

bizdoc Document Reference Trading Networks BizDocEnvelope
containing the SWIFT message.

Output Parameters

finlData Document SWIFT message as an IData in TAGONLY format.

convertedFinlData Document SWIFT message as an IData in specified format.

wm.fin.validation:validatelData

This service provides content validation, network rule validation, market practice rule
validation, and usage rule validation of a FIN IData.

Input Parameters

finlData Document FIN IData.

userParameters Document Reference User variables providing configuration
information for the message.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 223

A Services

Output Parameters

isValid String Specifies whether FIN IData passes validation according
to the message configuration.

errorArray Document List Errors occurring if FIN IData does not pass
validation.

wm.fin.validation:validatelDataUtil

This service validates content and structure of a FIN IData.

Input Parameters

validateHeaders String Optional. Specifies whether the service should validate the
headers. Valid values: true or false.

Output Parameters

isValid String Specifies whether FIN IData passes validation according
to the message configuration.

errors Document Conditional. Errors occurring if FIN IData does not
pass validation.

wm.sdk.fin Folder

This folder contains the Java services, XSDs and IS document types to support the SWIFT
SDK feature provided within SWIFT Module. SDK services convert MT messages from
flat file format into XML or from XML format into flat file format. This folder also
contains services to generate current versions of IS document types for MT and MX

messages.

Service

Service Description

wm.sdk.fin.converter:convert
MTBlock4dToMTXML

This service converts block 4 of the flat file MT
message into XML format.

wm.sdk.fin.converter:convert
MTFlatFileToMTXML

This service converts the entire flat file MT message
into XML format.

wm.sdk.fin.converter:convert
MTXMLblock4ToMTFlatFile

This service converts block 4 of the MT XML message
into flat file format.

wm.sdk.fin.converter:convert
MTXMLToMTFlatFile

This service converts the entire MT XML into MT flat
file format.

wm.sdk.fin.validator:validate
MTXML

This service validates any MT XML message against
the SWIFT SDK MT schema.

224

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.sdk.rec.mtxsd.Vyear

This folder contains the IS document types with names matching the message type,
MTxxx where “xxx” represents the message type. IS document types are organized in
directories according to the supported version number. For example, the folder
wm.sdk.rec.mtxsd.V2009:MTxxx contains the IS document types for version 2009 and
wm.sdk.rec.mtxsd.V2010:MTxxx contains the IS document types for version 2010.

wm.sdk.docgenerator:createMTISDocFromSchema

This service creates IS document types and IS schema for the corresponding MT schemas.

Input Parameters

msgType String Required. The SWIFT FIN MT message type for which the
IS document type will be created (for example, 564).

sdkversion String Required. The version of SWIFT SDK. This service uses the
SDK version to determine which XSD to apply during file
conversion. Valid values are any SDK version that SWIFT
Module supports (for example, version 2009 or 2010).

Output Parameters

isSuccessful String Required. Indicates if the service executed successfully.

Warnings Document Optional. Warnings that result during the creation of
the IS document type.

Errors Document Optional. Errors that result during the creation of the
IS document type.

wm.sdk.docgenerator:createMXISDocFromSchema

This service creates IS document types and IS schema for the corresponding MX schemas.

Input Parameters

msgType String Required. The SWIFT FIN MX message type for which the
IS document type will be created (for example, acmt.018.001.01).

namespaceURI String Required. Target namespace of the MX schema (for
example, urn:iso:std:is0:20022:tech:xsd:acmt.018.001.01).

Output Parameters

isSuccessful String Required. Indicates if the service executed successfully.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 225

A Services

Warnings Document Optional. Warnings that result during the creation of
the message type.
Errors Document Optional. Errors that result during the creation of the

message type.

wm.sdk.fin.converter:convertMTBlock4dToMTXML

This service converts block 4 of the MT flat file into XML format.

Input Parameters

sdkversion String Required. The version of SWIFT SDK. This service uses the
SDK version to determine which XSD to apply during file
conversion. Valid values are any SDK version that SWIFT
Module supports (for example, version 2009 or 2010).

msgType String Required. The message type corresponding to block 4 of
the MT message passed in from the finMsg parameter (for
example, 199).

finMsg String Required. Block 4 of the MT flat file. This service converts
block 4 data into MT XML format.

relaxed String Optional. Formats the input with carriage return and line
feed characters (“\r\n”) to comply with SWIFT message
specifications.

Note: The path separator for all the lines in block 4is “\r\n”. The
carriage return (\r) is omitted from the input file when viewed
in the message editor. When this parameter is set to true, the
service inserts the omitted carriage return character.

Valid values are true and false:

B true (Default) The service applies the correct “\r\n”
formatting to the input file. This parameter must be true
(selected) when providing the finMsg through the user
interface dialog box.

B false This parameter is false (unselected) when the service
processes the finMsg input from a file or from the previous

step in the pipeline.
Output Parameters
xmlData String The MT XML data generated from block 4 of the original
MT flat file message.

226 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

errDoc

Document Reference Errors encountered during processing are

reported using the standard “wm.sdk.rec.mtxsd:ErrorReport”
document type format. The following tags are included within
the XML error document:

XML Tag

Description

errDoc/ConversionEr
rotS

errDoc/ConversionEr
rors/Error

errDoc/ConversionEr
rors/Error[x]/Code

errDoc/ConversionEr
rors/Error[x]/Messag
e

errDoc/ConversionEr
rors/rror[x]/Location

errDoc/ConversionEr
rors/Error[0]/Locatio
n/LineNumber

Document The opening XML tag for the
errors generated during conversion.

Document List List of conversion errors
generated during processing.

String Code corresponding to the error in
SWIFT format (for example, TC00103).
For more information see “SDK Error
Descriptions” on page 250.

String Message corresponding to the error
code in SWIFT format (for example, “The
message content is invalid Details:
MT2XML.002.004”).

Document Location within the finMsg
where the conversion failed.

String Line number within the finMsg
where the conversion failed.

wm.sdk.fin.converter:convertMTFlatFileTOMTXML

This service converts the entire flat file MT message into an MT XML message.

Input Parameters

sdkversion

String Required. The version of SWIFT SDK. This service uses the

SDK version to determine which MT IS document schema to
apply during file conversion. Valid values are any SDK version
that SWIFT Module supports (for example, version 2009 or

2010).
finMsg

String Required. The FIN flat file MT message. This service

converts the flat file into MT XML format.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

227

A Services

relaxed String Optional. Formats the input with carriage return and line
feed characters (“\r\n”) to comply with SWIFT message
specifications.

Note: The path separator for all the lines in block 4 is “\r\n”. The
carriage return (\r) is omitted from the input file when viewed
in the message editor. When this parameter is set to true, the
service inserts the omitted carriage return character.

Valid values are true and false:

B true (Default) The service applies the correct “\r\n”
formatting to the input file. This parameter must be true
(selected) when providing the finMsg through the user
interface dialog box.

B false This parameter is false (unselected) when the service
processes the finMsg input from a file or from the previous

step in the pipeline.
Output Parameters
xmlData String The XML message generated from the original finMsg flat
file.
errDoc Document Reference Errors encountered during processing are

reported using the standard “wm.sdk.rec.mtxsd:ErrorReport”
document type format. The following tags are included within
the XML error document:

XML Tag Description

errDoc/ConversionEr Document The opening XML tag for the
rors errors generated during conversion.

errDoc/ConversionEr Document List List of conversion errors
rors/Error generated during processing.

errDoc/ConversionEr ~ String Code corresponding to the error in

rors/Error[x]/Code SWIFT format (for example, TC00103).
For more information see “SDK Error
Descriptions” on page 250.

errDoc/ConversionEr ~ String Message corresponding to the error

rors/Error[x]/Messag code in SWIFT format (for example, “The

e message content is invalid Details:
MT2XML.002.004").

errDoc/ConversionEr ~ Document Location within the finMsg
rors/Error[x]/Locatio where the conversion failed.
n

228 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

errDoc/ConversionEr ~ String Line number within the finMsg
rors/Error[0]/Locatio where the conversion failed.
n/LineNumber

wm.sdk.fin.converter:convertMTXMLblock4ToMTFlatFile

This service converts block 4 of the MT XML message into flat file format.

Input Parameters

sdkversion

msgType

finXML

Output Parameters

String Required. The version of SWIFT SDK. This service uses the
SDK version to determine which XSD to apply during file
conversion. Valid values are any SDK version that SWIFT
Module supports (for example, version 2009 or 2010).

String Required. The message type corresponding to the MT
XML message passed in the finXML parameter (for example,
199).

String Required. The MT XML message. This service converts the
XML message into flat file format.

finMsg

errDoc

String The flat file generated from block 4 of the MT XML
message.

Document Reference Errors encountered during processing are
reported using the “wm.sdk.rec.mtxsd:ErrorReport” document
type format. The following tags are provided in the XML error
document:

XML Tag Description

errDoc/ConversionEr Document The opening XML tag for the
rors errors generated during conversion.

errDoc/ConversionEr ~ Document List List of conversion errors
rors/Error generated during processing.

errDoc/ConversionEr ~ String Code corresponding to the error in

rors/Error[x]/Code SWIFT format (for example, TC00103).
For more information see “SDK Error
Descriptions” on page 250.

errDoc/ConversionEr String Message corresponding to the error

rors/Error[x]/Messag ~ code in SWIFT format (for example, “The

e message content is invalid Details:
MT2XML.002.004").

webMethods SWIFT Module Installation and User’s Guide Version 7.1 229

A Services

errDoc/ConversionEr
rors/Error[x]/Locatio
n

errDoc/ConversionEr
rors/Error[0]/Locatio
n/LineNumber

Document Location within the finMsg
where the conversion failed.

String Line number within the finMsg
where the conversion failed.

wm.sdk.fin.converter:convertMTXMLToMTFlatFile

This service converts the entire MT XML message into an MT flat file message.

Input Parameters

sdkversion

msgType

finXML

Output Parameters

String Required. The version of SWIFT SDK. This service uses the
SDK version to determine which XSD to apply during file
conversion. Valid values are any SDK version that SWIFT
Module supports (for example, version 2009 or 2010).

String Required. The message type corresponding to the MT
XML message that is passed in the finXML parameter (for

example, 199).

String Required. The MT XML message. This service converts the
MT message into flat file format.

finMsg

errDoc

String The MT flat file message generated from the XML

message.

Document Reference Errors encountered during processing are
reported using the “wm.sdk.rec.mtxsd:ErrorReport” document
type format. The following tags are provided in the XML error

document:

XML Tag Description

errDoc/ConversionEr Document The opening XML tag for the
rors errors generated during conversion.
errDoc/ConversionEr ~ Document List List of conversion errors
rors/Error generated during processing.
errDoc/ConversionEr ~ String Code corresponding to the error in
rors/Error[x]/Code SWIFT format (for example, TC00103).

For more information see “SDK Error
Descriptions” on page 250.

230

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

errDoc/ConversionEr ~ String Message corresponding to the error

rors/Error[x]/Messag code in SWIFT format (for example, “The

e message content is invalid Details:
MT2XML.002.004").

errDoc/ConversionEr ~ Document Location within the finMsg
rors/Error[x]/Locatio where the conversion failed.
n

errDoc/ConversionEr String Line number within the finMsg
rors/Error[0]/Locatio where the conversion failed.
n/LineNumber

wm.sdk.fin.validator:validateMTXML

This service validates any MT XML message against the SWIFT SDK MT schema.

Input Parameters

finXML

sdkversion

msgType

Output Parameters

String Required. The MT XML message to be validated.

String Required. The version of SWIFT SDK. This service uses the
SDK version to determine which XSD to apply during file
conversion. Valid values are any SDK version that SWIFT
Module supports (for example, version 2009 or 2010).

String Required. The message type corresponding to block 4 of
the MT message passed in the finMsg parameter (for example,
199).

isValid

errDoc

String The result of the validation. The result s either true or
false.

Document Reference Errors encountered during processing are
reported using the “wm.sdk.rec.mtxsd:ErrorReport” document
type format. The following tags are provided in the XML error
document:

XML Tag Description

errDoc/ConversionEr Document The opening XML tag for the
rors errors generated during conversion.

errDoc/ConversionEr ~ Document List List of conversion errors
rors/Error generated during processing.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 231

A Services

errDoc/ConversionEr String Code corresponding to the error in

rors/Error[x]/Code SWIFT format (for example, TC00103).
For more information see “SDK Error
Descriptions” on page 250.

errDoc/ConversionEr ~ String Message corresponding to the error

rors/Error[x]/Messag ~ code in SWIFT format (for example, “The

e message content is invalid Details:
MT2XML.002.004").

errDoc/ConversionEr Document Location within the finMsg
rors/Error[x]/Locatio where the conversion failed.
n

errDoc/ConversionEr ~ String Line number within the finMsg
rors/Error[0]/Locatio where the conversion failed.
n/LineNumber

Supported SDK MX Message Types
The following table lists the SWIFT SDK MX schemas bundled with SWIFT Module.

Message Category Range Supported MX Message Schemas
acmt 00T .xxx.xx- acmt.001.001.01
005.xxx.xx

acmt.001.001.02

acmt.002.001.01

acmt.002.001.02

acmt.003.001.01

acmt.003.001.02

acmt.004.001.01

acmt.004.001.02

acmt.005.001.01

acmt.005.001.02

acmt 006.xxx.xX- acmt.006.001.01
010000 acmt.006.001.02
acmt.007.001.01

acmt.008.001.01

acmt.009.001.01

acmt.010.001.01

232 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category Range Supported MX Message Schemas
acmt 01T.xxx.xx- acmt.011.001.01
015.xxx.xx

acmt.012.001.01

acmt.013.001.01

acmt.014.001.01

acmt.015.001.01

acmt 016.xxx.xx- acmt.016.001.01
021 o0cxx acmt.017.001.01

acmt.018.001.01

acmt.019.001.01

acmt.020.001.01

acmt.021.001.01

admi 001.xxx.xx- admi.001.001.01
9982000 admi.002.001.01

admi.003.001.01

admi.004.001.01

admi.998.001.01

camt .00T.xxx.xx- camt.003.001.03
005000 camt.003.001.04

camt.004.001.03

camt.004.001.04

camt.005.001.03

camt.005.001.04

webMethods SWIFT Module Installation and User’s Guide Version 7.1 233

A Services

Message Category Range Supported MX Message Schemas
camt .006.xxx.xx~ camt.006.001.03
.010.xxx.xx

camt.006.001.04
camt.007.001.03
camt.007.001.04
camt.007.002.02
camt.007.002.03
camt.008.001.03
camt.008.001.04
camt.008.002.02
camt.009.001.03
camt.009.001.04

camt.010.001.03

camt.010.001.04

camt 01T xxx.xx- camt.011.001.03
0152000 camt.011.001.04

camt.012.001.03

camt.012.001.04
camt.013.001.02
camt.013.001.01
camt.014.001.01
camt.014.001.02
camt.015.001.01
camt.015.001.02

234 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category Range

Supported MX Message Schemas

camt .016.xxx.xx-
.020.xxx.xx

camt.016.001.01
camt.016.001.02
camt.017.001.01
camt.017.001.02
camt.018.001.01
camt.018.001.02
camt.019.001.02
camt.019.001.03
camt.020.001.01
camt.020.001.02

camt .0216.xxx.xx-
025 . xxx.xx

camt.021.001.01
camt.021.001.02
camt.023.001.02
camt.023.001.03
camt.024.001.02
camt.024.001.03
camt.025.001.01
camt.025.001.02

camt .026.xxx.xx-
.030.xxx.xx

camt.026.001.02
camt.026.001.03
camt.027.001.02
camt.027.001.03
camt.028.001.02
camt.028.001.03
camt.029.001.02
camt.029.001.03
camt.030.001.02
camt.030.001.03

webMethods SWIFT Module Installation and User’s Guide Version 7.1

235

A Services

Message Category Range Supported MX Message Schemas
camt .031.xxx.xx- camt.031.001.02
.035.xxx.xx

camt.031.001.03

camt.032.001.01

camt.032.001.02

camt.033.001.02

camt.033.001.03

camt.034.001.02

camt.034.001.03

camt.035.001.01

camt.035.001.02

camt .036.xxx.xx- camt.036.001.01
0202000 camt.036.001.02
camt.037.001.02

camt.037.001.03

camt.038.001.01

camt.038.001.02

camt.039.001.02

camt.039.001.03

camt.040.001.02

camt.040.001.03

camt 0471 .xxx.xx- camt.041.001.02
04520003 camt.041.001.03
camt.042.001.02

camt.042.001.03

camt.043.001.02

camt.043.001.03

camt.044.001.01

camt.044.001.02

camt.045.001.01

camt.045.001.02

236 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category Range

Supported MX Message Schemas

camt .046.xxx.xx-
.050.xxx.xx

camt.046.001.01
camt.046.001.02
camt.047.001.01
camt.047.001.02
camt.048.001.01
camt.048.001.02
camt.049.001.01
camt.049.001.02
camt.050.001.01
camt.050.001.02

camt 05T . xxx.xx-
.055.xxx.xx

camt.051.001.01
camt.051.001.02
camt.052.001.01
camt.052.001.02
camt.053.001.01
camt.053.001.02
camt.054.001.01
camt.054.001.02
camt.055.001.01

camt .056.xxx.xx-
1999 .xxx. XX

camt.056.001.01
camt.057.001.01
camt.058.001.01
camt.059.001.01
camt.060.001.01
camt.061.001.01
camt.062.001.01
camt.998.001.01
camt.998.001.02

webMethods SWIFT Module Installation and User’s Guide Version 7.1

237

A Services

Message Category Range Supported MX Message Schemas
colr .001.xxx.xx- colr.003.001.01
999 .xxx.xx

colr.004.001.01
colr.005.001.01
colr.006.001.01
colr.007.001.01
colr.008.001.01
colr.009.001.01
colr.010.001.01
colr.011.001.01
colr.012.001.01
colr.013.001.01
colr.014.001.01
colr.015.001.01
fxtr 00T xxx.xx- fxtr.014.001.01

99920003 fxtr.015.001.01
fxtr.016.001.01
head 00T xxx.xx- head.001.001.01
999 .xxx.xx
pacs 00T xxx.xx- pacs.002.001.03
9992000 pacs.003.001.02
pacs.004.001.02

pacs.007.001.02
pacs.008.001.02
pacs.009.001.02

238 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category Range

Supported MX Message Schemas

pain L00T.xxx.xx-
1999 .xxx.xx

pain.001.001.02
pain.001.001.03
pain.002.001.02
pain.002.001.03
pain.007.001.01
pain.007.001.02
pain.008.001.01
pain.008.001.02
pain.009.001.01
pain.010.001.01
pain.011.001.01
pain.012.001.01
pain.998.001.01

reda 001 xxx.xx-
1999 xxx. XX

reda.001.001.02
reda.001.001.03
reda.002.001.02
reda.002.001.03
reda.003.001.02
reda.003.001.03
reda.004.001.02
reda.005.001.02

webMethods SWIFT Module Installation and User’s Guide Version 7.1

239

A Services

Message Category Range Supported MX Message Schemas
seev 001 .xxx.xx- seev.001.001.03
.005.xxx.xx

seev.001.001.04

seev.002.001.03

seev.002.001.04

seev.003.001.03

seev.003.001.04

seev.004.001.03

seev.004.001.04

seev.005.001.03

seev.005.001.04

seev .006.xxx.xx- seev.006.001.03
010000 seev.006.001.04

seev.007.001.03

seev.007.001.04

seev.008.001.03

seev.008.001.04

seev.009.001.01

seev.010.001.01

seev L01T.xxx.xx- seev.011.001.01
015000 seev.012.001.01

seev.013.001.01

seev.014.001.01

seev.015.001.01

seev .016.xxx.xx- seev.016.001.01
02020063 seev.017.001.01

seev.018.001.01

seev.019.001.01

seev.020.001.01

240 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category

Range

Supported MX Message Schemas

seev

021 . xxx.xx-
.025.xxx.xx

seev.021.001.01
seev.022.001.01
seev.023.001.01
seev.024.001.01
seev.025.001.01

seev

.026.xxx. XX~
.030.xxx.xx

seev.026.001.01
seev.027.001.01
seev.028.001.01
seev.029.001.01
seev.030.001.01

seev

.03T.xxx.xx-
.035.xxx.xx

seev.031.001.01
seev.031.002.01
seev.032.001.01
seev.032.002.01
seev.033.001.01
seev.033.002.01
seev.034.001.01
seev.034.002.01
seev.035.001.01
seev.035.002.01

seev

.036.xxx.xx-
.040.xxx.xx

seev.036.001.01
seev.036.002.01
seev.037.001.01
seev.037.002.01
seev.038.001.01
seev.038.002.01
seev.039.001.01
seev.039.002.01
seev.040.001.01
seev.040.002.01

webMethods SWIFT Module Installation and User’s Guide Version 7.1

241

A Services

Message Category Range Supported MX Message Schemas
seev .041.xxx.xx- seev.041.001.01
.045.xxx.xx

seev.041.002.01

seev.042.001.01

seev.042.002.01

seev.044.001.01

seev.044.002.01

semt .00T.xxx.xx- semt.001.001.01
005000 semt.001.001.02
semt.002.001.01

semt.002.001.02

semt.002.001.03

semt.002.002.03

semt.003.001.01

semt.003.001.02

semt.003.001.03

semt.003.002.03

semt.004.001.01

semt.004.001.02

semt.005.001.01

semt.005.001.02

semt .006.xxx.xx- semt.006.001.01
0102000xx semt.006.001.02
semt.007.001.01

semt.007.001.02

semt.008.001.01

semt.008.001.02

semt.009.001.01

semt.009.001.02

semt.010.001.01

242 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category Range

Supported MX Message Schemas

semt 01T xxx.xx-
L015.xxx.xx

semt.011.001.01
semt.012.001.01
semt.013.001.01
semt.013.002.01
semt.014.001.01
semt.014.002.01
semt.015.001.01
semt.015.002.01

semt .016.xxx.xx-
1999 . xxx. XX

semt.016.001.01
semt.016.002.01
semt.017.001.01
semt.017.002.01
semt.018.001.01
semt.018.002.01
semt.019.001.01
semt.019.002.01
semt.020.001.01
semt.020.002.01
semt.021.001.01
semt.021.002.01
semt.998.001.01

sese .00T.xxx.xx-
.005.xxx.xx

sese.001.001.02
sese.002.001.02
sese.003.001.02
sese.004.001.02
sese.005.001.02

webMethods SWIFT Module Installation and User’s Guide Version 7.1

243

A Services

Message Category Range Supported MX Message Schemas
sese .006.xxx.xXx- sese.006.001.02
.010.xxx.xx

sese.007.001.02

sese.008.001.02

sese.009.001.02

sese.010.001.02

sese 017 .xxx.xx- sese.011.001.02
O152000x0¢ sese.012.001.02

sese.013.001.02

sese.014.001.02

sese .016.xxx.xx- sese.018.001.01

0202000 sese.019.001.01
sese.020.001.01
sese.020.002.01

sese 021 .xxx.xx- sese.021.001.01

.025.xxx.xx

sese.021.002.01
sese.022.001.01
sese.022.002.01
sese.023.001.01
sese.023.002.01
sese.024.001.01
sese.024.002.01
sese.025.001.01
sese.025.002.01

244 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category Range

Supported MX Message Schemas

sese .026.xxx.xx-
.030.xxx.xx

sese.026.001.01
sese.026.002.01
sese.027.001.01
sese.027.002.01
sese.028.001.01
sese.028.002.01
sese.029.001.01
sese.029.002.01
sese.030.001.01
sese.030.002.01

sese L03T.xxx.xx-
.035.xxx.xx

sese.031.001.01
sese.031.002.01
sese.032.001.01
sese.032.002.01
sese.033.001.01
sese.033.002.01
sese.034.001.01
sese.034.002.01
sese.035.001.01
sese.035.002.01

sese .036.xxx. XX~
.999 . xxx.xx

sese.036.001.01
sese.036.002.01
sese.037.001.01
sese.037.002.01

webMethods SWIFT Module Installation and User’s Guide Version 7.1

245

A Services

Message Category Range Supported MX Message Schemas
setr 001 .xxx.xx- setr.001.001.02
.005.xxx.xx

setr.001.001.03

setr.002.001.02

setr.002.001.03

setr.003.001.02

setr.003.001.03

setr.004.001.02

setr.004.001.03

setr.005.001.02

setr.005.001.03

setr .006.xxx.xx- setr.006.001.02
010000 setr.006.001.03
setr.007.001.02

setr.007.001.03

setr.008.001.02

setr.008.001.03

setr.009.001.02

setr.009.001.03

setr.010.001.02

setr.010.001.03

setr 01 Txoxx.xx- setr.011.001.02
015000 setr.011.001.03
setr.012.001.02

setr.012.001.03

setr.013.001.02

setr.013.001.03

setr.014.001.02

setr.014.001.03

setr.015.001.02

setr.015.001.03

246 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category

Range

Supported MX Message Schemas

setr

.016.xxx.xx-
.020.xxx.xx

setr.016.001.02
setr.016.001.03
setr.017.001.02
setr.017.001.03
setr.018.001.02
setr.018.001.03

setr

.045.xxx.xx-
.050.xxx.xx

setr.047.001.01
setr.048.001.01
setr.049.001.01
setr.050.001.01

setr

05T . xxx.xx-
.055.xxx.xx

setr.051.001.01
setr.052.001.01
setr.053.001.01
setr.054.001.01
setr.055.001.01

setr

.056.xxx.xx-

.060.xxx.xx

setr.056.001.01
setr.057.001.01
setr.058.001.01
setr.059.001.01
setr.060.001.01

setr

.061.xxx.xx-
1999 xxx. XX

setr.061.001.01
setr.062.001.01
setr.064.001.01
setr.065.001.01
setr.066.001.01

trea

.001.xxx.xx-
.005.xxx.xx

trea.001.001.02
trea.002.001.02
trea.003.001.02
trea.004.001.02
trea.005.001.02

webMethods SWIFT Module Installation and User’s Guide Version 7.1

247

A Services

Message Category Range Supported MX Message Schemas
trea .006.xxx.xx- trea.006.001.02
.010.xxx.xx

trea.007.001.02

trea.008.001.02

trea.009.001.02

trea.009.001.03

trea.010.001.02

trea.010.001.03

trea L01Txxx.xx- trea.011.001.02
9992000xx trea.011.001.03

trea.012.001.02

trea.012.001.03

trea.012.001.04

trea.013.001.01

tsmt 00T xxx.xx- tsmt.001.001.03
00520003 tsmt.002.001.03
tsmt.003.001.03
tsmt.004.001.02
tsmt.005.001.02
tsmt .006.xxx.xx- tsmt.006.001.03
010000xx tsmt.007.001.02
tsmt.008.001.03
tsmt.009.001.03
tsmt.010.001.03
tsmt 017 xxx.xx- tsmt.011.001.03
01520000 tsmt.012.001.03
tsmt.013.001.03
tsmt.014.001.03
tsmt.015.001.03

248 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Message Category

Range

Supported MX Message Schemas

tsmt

.016.xxx.xx-
.020.xxx.xx

tsmt.016.001.03
tsmt.017.001.03
tsmt.018.001.03
tsmt.019.001.03
tsmt.020.001.02

tsmt

021 xxx.xx-
025 . xxx.xx

tsmt.021.001.03
tsmt.022.001.02
tsmt.023.001.03
tsmt.024.001.03
tsmt.025.001.03

tsmt

.026.xxx.xx-
.030.xxx.xx

tsmt.026.001.02
tsmt.027.001.02
tsmt.028.001.03
tsmt.029.001.02
tsmt.030.001.03

tsmt

.031.xxx.xx-
.035.xxx.xx

tsmt.031.001.03
tsmt.032.001.03
tsmt.033.001.03
tsmt.034.001.03
tsmt.035.001.03

tsmt

.036.xxx.xx-
.040.xxx.xx

tsmt.036.001.03
tsmt.037.001.03
tsmt.038.001.03
tsmt.040.001.03

tsmt

041 xxx.xx-
.045 . xxx.xx

tsmt.041.001.03
tsmt.042.001.03
tsmt.044.001.01
tsmt.045.001.01

webMethods SWIFT Module Installation and User’s Guide Version 7.1

249

A Services

Message Category Range Supported MX Message Schemas
tsmt .046.xxx.xx- tsmt.046.001.01
050000 tsmt.047.001.01
tsmt.048.001.01
tsmt.049.001.01
tsmt.050.001.01
tsmt 051 xxx.xx- tsmt.051.001.01
9992000xx tsmt.052.001.01
SDK Error Descriptions

Exceptions encountered during the execution of any of the SDK conversion services are
captured in the output parameter “errDoc.” This parameter contains the error code in
either the errDoc/ConversionErrors/Error[x]/Code or the
errDoc/ValidationErrors/Error[x]/Code field.

The following error codes may be generated:

wm.unifi Folder

TC00100—A field was encountered that was not expected at this location.
TC00101 —The end of the MT message was encountered too soon.
TC00102—There is a problem with the content of the field.

TC00103 —There is a problem with the field.

TC00200— An element was encountered that was not expected at this location.
TC00201 —The end of the XML MT message was encountered too soon.
TC00202 —There is a problem with the content of the field.

TC00901 —There is a generic problem.

Important! The following services have been deprecated: wm.unifi.convertXMLtolData,
wm.unifi.transportSAA, and wm.unifi.utils.validateRules. Use the services in the

wm.unifi.validation folder instead.

250

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.unifi.convertXMLtolData

Deprecated. This service converts an XML message into IData and validates it against
schema and the generic rule book.

Input Parameters

xmldata String XML message.

MXIdentifier String The fully qualified name of the IS schema name for the
specified XML document, for example,
wm.xmlvZ.doc.camt_007_002_01:schema_camt_007_002_01.

validate String Indicates whether to validate this XML message against an
XML schema and the SWIFT generic rule book. Valid values are
true and false.

Output Parameters

document IData IData representing the XML input data.

isValid String Indicates whether the XML data is a valid MX message.
Valid values are true and false.

errors IData List of errors, if any.

wm.unifi.tranportSAA

Deprecated. This service sends an MX/MT message to SAA in XMLv2 format.

Input Parameters

msgRef String Message reference identifier.

payload String MX/MT message payload.

serviceName String The name of the SWIFT messaging service.

messageldentifier String Message identifier.

requestor String The DN name of the sender (used for MX messages).

responder String The DN name of the receiver (used for MX messages).

filename String The full path of the output file. This file should belong to
the directory configured as the inbound AFT in SAA (if using
AFT mode).

adapterService String The name of the WebSphere MQ Adapter service (if

MQSA mode of transport is used).
format String Specifies the payload format. Valid values are MT and MX.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 251

A Services

senderBIC String The BIC code of the sender (used for MT messages).

receiverBIC String BIC code of receiver (used for MT messages).

Output Parameters

None.

wm.unifi.utils.validateRules

Deprecated. This service validates an MX message for schema conformance and proper
rule definition as outlined in the SWIFT generic rule book.

Input Parameters

Object Object An XML element Object instance of an MX message type.

conformsTo String The fully qualified name of the IS Schema against which
the XML string must be validated.

validate String Indicates whether to validate this XML message against an
XML schema, and the SWIFT generic rule book. Valid values are
true and false.

Output Parameters

isValid String Indicates whether the XML data is a valid MX message.
Valid values are true and false.

errors IData List of errors, if any.

wm.unifi.validation Folder

The services in this folder validate an MX message against the SWIFT generic rule book.

wm.unifi.validation:validateBEI

This service verifies if the BEI code exists in the SWIFT database.

Note: By default the service returns true when the input xmINode does not contain a node
element with QName as the specified TypeName. In this case the following optional
warning message is returned: “No node with the specified TypeName could be found for
the entered xmINode.”

Input Parameters

xmlINode Object An XML element object instance of an MX message type.

252 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

TypeName

ErrorCode

Output Parameters

String The tag name that identifies the element containing the
BEI code. The service extracts the value of the element using the
type name to identify it and validate the data value.

String The default value for the error code is Sw.Stds.D0002. You
can replace it with a custom error code.

isValid
errors
error/pathName

error/errorCode
error/errorMessage

error/errorData

String The result of the MX string validation. Valid values are
true or false.

Document List Conditional. Errors that occur when the MX
message does not pass validation.

String The complete xpath of the element for which validation
failed.

String The error code for the corresponding element.
String The detailed message for the error that occurred.

String The field content for which validation failed.

wm.unifi.validation:validateBIC

This service verifies if the BIC code exists in the SWIFT database.

Note: By default the service returns true when the input xmINode does not contain a node
element with QName as the specified TypeName. In this case you receive the following
optional warning message: “No node with the specified TypeName could be found for
the entered xmINode.”

Input Parameters

xmlINode
TypeName

ErrorCode

Output Parameters

Object An XML element Object instance of an MX message type.

String The tag name identifying the element that contains the BIC
code. The service extracts the value of the element using the type
name to identify it and validate the data value.

String The default value for the error code is Sw.Stds.D0001. You
can replace it with a custom error code.

isValid

errors

String The result of the MX string validation. Valid values are
true or false.

Document List Conditional. Errors that occur when the MX
message does not pass validation.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 253

A Services

error/pathName

error/errorCode
error/errorMessage

errorl/errorData

String The complete xpath of the element for which validation
failed.

String The error code for the corresponding element.
String The detailed message for the error that occurred.

String The field content for which validation failed.

wm.unifi.validation:validateCountryCode

This service verifies if the country code exists in the SWIFT database.

Note: By default the service returns true when the input xmINode does not contain a node
element with QName as the specified TypeName. In this case you receive the following
optional warning message: “No node with the specified TypeName could be found for
the entered xmINode.”

Input Parameters

xmlINode
TypeName

ErrorCode

Output Parameters

Object An XML element Object instance of an MX message type.

String The tag name identifying the element that contains the
country code. The service extracts and validates this value, using
the type name to identify it.

String The default value for the error code is Sw.Stds.D0004. You
can replace it with a custom error code.

isValid String The result of the MX string validation. Valid values are
true or false.
errors Document List Conditional. Errors that occur when the MX
message does not pass validation.
error/pathName String The complete xpath of the element for which validation
failed.
error/errorCode String The error code for the corresponding element.
error/errorMessage String The detailed message for the error that occurred.
error/errorData String The field content for which validation failed.
254 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.unifi.validation:validateCurrencyCode

This service verifies if the currency code exists in the SWIFT database.

Note: By default the service returns true when the input xmINode does not contain a node
element with QName as the specified TypeName. In this case you receive the following
optional warning message: “No node with the specified TypeName could be found for
the entered xmINode.”

Input Parameters

xmlINode Object An XML element object instance of an MX message type.

TypeName String The tag name that identifies the element containing the
currency code. The service extracts the value of the element
using the type name to identify it and validate the data value.

AttrName String The attribute name that contains the value for the currency
code.
ErrorCode String The default value for the error code is Sw.Stds.D0005. You

can replace it with a custom error code.

Output Parameters

isValid String The result of the MX string validation. Valid values are
true or false.

errors Document List Conditional. Errors that occur when the MX
message does not pass validation.

error/pathName String The complete xpath of the element for which validation
failed.

error/errorCode String The error code for the corresponding element.

error/errorMessage String The detailed message for the error that occurred.

error/errorData String The field content for which validation failed.

wm.unifi.validation:validateIBAN

This service verifies if the IBAN exists in the SWIFT database.

Note: By default the service returns true when the input xmINode does not contain a node
element with QName as the specified TypeName. In this case you receive the following
optional warning message: “No node with the specified TypeName could be found for
the entered xmINode.”

webMethods SWIFT Module Installation and User’s Guide Version 7.1 255

A Services

Input Parameters

xmlNode
TypeName

ErrorCode

Output Parameters

Object An XML element Object instance of an MX message type.

String The tag name that identifies the element containing the
IBAN. The service extracts the value of the element using the
type name to identify it and validate the data value.

String The default value for the error code is Sw.Stds.D0003. You
can replace it with a custom error code.

isValid
errors
error/pathName

errorferrorCode
error/errorMessage

error/errorData

String The result of the MX string validation. Valid values are
true or false.

Document List Conditional. Errors that occur when the MX
message does not pass validation.

String The complete xpath of the element for which validation
failed.

String The error code for the corresponding element.
String The detailed message for the error that occurred.

String The field content for which validation failed.

wm.unifi.validation:validateMXMsg

This service performs different validations of the MX message.

Input Parameters

xmlINode
XMLV2Params

Output Parameters

Object An XML element object instance of an MX message type.

Document Reference The XMLV2Params document reference. You
can configure various parameters in this document to trigger
different validations for the input XMLv2 MX message instance.

1sValid
errors

error/pathName
error/errorCode

error/errorMessage

String The result of the MX string validation. Valid values are
true or false.

Document List Conditional. Errors that occur when the MX
message does not pass validation.

String The complete xpath of the element which failed validation.
String The error code for the corresponding element.

String The detailed message for the error that occurred.

256

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

error/errorData

Message

String The field content for which validation failed.

String Provides additional information during validation, for
example, “Skipping non-schema validations” and “Skipping all
MX validations.”

Process Information Section of the XMLv2 Parameters

Document

Parameter Name

Description

Validate

Indicates to the transport service whether to validate the MX
message.

Schema The parameters in this subsection indicate whether to perform
o schema validation for the MX message instance.
Validation
Name Description
conformTo Takes the fully qualified name of the IS schema
against which schema will be performed.
Validate Indicates whether to perform schema validation.
Valid values are true and false.
ValidateContent Indicates whether to perform content validation.
Valid values are true and false.
NonSchemaValid ~ The parameters in this subsection indicate if a non-schema
ation (extended) validation must be performed for the MX message.

Name Description
Validate/BIC These parameters indicate whether to perform
BIC validation for the MX message.
Name Description
Validate Indicates whether to perform BIC
validation. Valid values are true
and false.

ErrorCode Error code generated if validation
fails. Default value is
Sw.Stds.D00001.

TypeName Tag ID for the BIC field.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 257

A Services

Parameter Name Description

Name Description
Validate/BEI These parameters indicate whether to perform

BEI validation for the MX message instance.

Name Description

Validate Indicates whether to perform BEI
validation. Valid values are true
and false.

ErrorCode Error code generated if validation
fails. Default value is
Sw.Stds.D00002.

TypeName Tag ID for the BEI field.

Name Description
Validate/IBAN ~ These parameters indicate whether to perform

IBAN validation for the MX message.

Validate Indicates whether to perform IBAN
validation. Valid values are true
and false.

ErrorCode Error code generated if validation
fails. Default value is
Sw.Stds.D00003.

TypeName Tag identifier for the IBAN field.

Name Description
Validate/Countr ~ These parameters indicate whether to perform
y country code validation for the MX message.

Name Description

Validate Indicates whether to perform
country code validation. Valid
values are true and false.

ErrorCode Error code generated if validation
fails. Default value is
Sw.Stds.D00004.

TypeName Tag identifier for the country code
field in the MX message.

258

webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Parameter Name Description

Name Description

Validate/Currenc These parameters indicate whether to perform

yCode currency code validation for the MX message.
Name Description
Validate Indicates whether to perform

currency code validation. Valid
values are true and false.

ErrorCode Error code generated if validation
fails. Default value is
Sw.Stds.D00005.

TypeName Tag identifier for the currency code
field in the MX message.

AttrName Attribute name that contains the
value for the currency code.

Name Description

Validate/Currenc These parameters indicate whether to perform

yAmount currency amount validation for the MX message.
Name Description
Validate Indicates whether to perform

currency amount validation. Valid
values: true and false.

ErrorCode Error code generated if validation
fails. Default value is
Sw.Stds.D00007.

TypeName Tag ID for the currency amount
field.

wm.xmlv2.dev Folder

The service in this folder creates Trading Networks items for a particular message type.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 259

A Services

wm.xmlv2.dev:createSWIFTItems

This service creates a Data PDU document for a particular MT or MX message type.

Input Parameters

msgTypeName String The type of message, for example fin.101 (MT type) or
camt.029.001.01 (MX type). The message type identifies the
particular message type from the Data PDU.

format String Valid values are MT or MX.

finFormat String Optional. Defines the format of the IS document generated
for the MT message type. The following values specify how the
element is formatted within the IS document:

B TAG_BIZNAME (default)-The SWIFT message tag, followed by
the business name, for example, 23G6_Function of the Message.

B TAGONLY. The SWIFT Message tag only, for example 23G.

B BIZNAMEONLY. The business name of the field only, for
example,A—Account Servicing Institution.

B XMLTAG. XML-compatible tag name. This format cannot
contain colons or tags that begin with a number, for
example, F52A.

version String Optional (required only for MT messages). Specifies the
version of the SWIFT specification (for example, nov10).

subfieldFlag String Optional. Specifies whether to parse the fields in the IS
document type generated for this MT message to the subfield
level. Valid values:

B true (default). Parse to the subfield level.
B false. Parse to the field level.

createProcessingRule ~ String Optional. Creates a default processing rule for the
specified message type. Valid values are true and false. The
default is false.

Note: The SWIFT Module samples contain a sample that
provides more details for this parameter. For information about
the samples, see webMethods SWIFT Module Samples Guide.

createTPA String Optional. Creates a Trading Networks TPA for this
message that specifies variables used in WmFIN for processing
and validation. Valid values: true or false. The default is true.

260 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

createDocType String Optional. Indicates whether to create and insert a TN
document type for this message (used to recognize an incoming
message). Valid values: true or false. The defaultis true.

Output Parameters

None.

wm.xmlv2.doc Folder

The service in this folder allows you to use a TPA for a message type and configure all
necessary information to enable document processing.

wm.xmlv2.doc:XMLV2Params

The document type used as the TPA document. After creating a TPA for the
corresponding message type, you can configure all necessary information for processing
a document.

wm.xmlv2.notifications Folder

The service in this folder handles incoming delivery notifications.

wm.xmlv2.notifications:handleDeliveryNotifications

This service processes incoming MT and MX message documents as follows:

B MT Message Delivery Notification Processing: Extracts the MIR from the Delivery
Notification and searches the documents in the Trading Networks database for the
Sender Reference that matches the MIR extracted from the notification.

When the search is successful, the service relates the Delivery Notification to the
search results message as a “Delivery Notification.”

B MX Message Delivery Notification Processing: Extracts the ReconciliationInfo value
from the Delivery Notification and searches the Trading Networks database for the
corresponding Transmission Report with the matching ReconciliationInfo value.

When the search is successful, the service relates the Delivery Notification to the
Transmission Report of the MX message. The Transmission Report is, in turn, already
related to the MX message that was sent.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 261

A Services

When the relevant record is found in the Trading Networks database, this service
changes the status of the Delivery Notification to “reconciled.”

Input Parameters

bizdoc Object The TN document type of the bizdoc.

Output Parameters

None.

wm.xmlv2.process Folder

This folder contains services that apply processing rules to documents exchanged over
SAA.

wm.xmlv2.process:createSAADocC

This utility service converts a DataPDU XML element into IS DataPDU.

Input Parameters

xmldata String DataPDU in XML format.

Output Parameters

DataPDU Document Reference An instance of the wm.swift.doc:saa_2 IS
document type.

wm.xmlv2.process:getinboundMessageType

This service identifies the category of the Data PDU input, provided in XML format, and
processes it to determine the type of the incoming document from SAA.

Input Parameters

xmldata String The Data PDU of the incoming document in XML format.

Output Parameters

Type String The type of the incoming document from SAA.

TransmissionReport ~ String Conditional. The incoming document is a Transmission
Report.

262 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

DeliveryNotification ~ String Conditional. The incoming document is a Delivery

Notification.
DeliveryReport String Conditional. The incoming document is a Delivery Report.
HistoryReport String Conditional. The incoming document is a History Report.
MessageStatus String Conditional. The incoming document is a Message Status.
SessionStatus String Conditional. The incoming document is a Session Status.

wm.xmlv2.process:outbound

This service processes an outbound Trading Networks bizdoc object. This service sends
the Data PDU in XML format to SAA, using the transport type specified in the
corresponding TPA. (SWIFT Module supports two types of transport: MQ or FTA.)

Input Parameters

bizdoc Object The TN document type of the bizdoc.

Output Parameters

None.

wm.xmlv2.process:processinbound

This service processes all inbound documents from SAA to SWIFT Module, performing
the preliminary processing of the inbound Data PDU and submitting it to Trading
Networks for further processing.

Input Parameters

xmldata String The Data PDU in XML format.

Output Parameters

None.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 263

A Services

wm.xmlv2.process:reconcilelnboundDocuments

This service reconciles all incoming notifications from SAA. It identifies the category of
the notification and relates the notification to the original document based on the Sender
Reference of the document attribute. It also updates the status of the original document
depending on the incoming notification.

Input Parameters

xmldata String Content of the inbound MX message received from SAA in
bizdoc format.

Output Parameters

None.

wm.xmlv2.transport Folder

The service in this folder handles the routing of an incoming message in XML format.

wm.xmlv2.transport:submitDataPDU

This service persists the DataPDU in Trading Networks and routes the resultant bizdoc
for further processing.

Input Parameters

xmldata String Populates the SenderReference and UserReference
elements in the message header.

Output Parameters

None.

wm.xmlv2.utils Folder

This folder contains utility services for message encoding.

264 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.xmlv2.utils:encodeBlock4

This service encodes block 4 of an MT message to a base64 string.

Input Parameters

block4 String The block4 contents of the MT message.

Output Parameters

encodedBlock String The base-64- encoded block 4 of the MT message included
in the body section of the Data PDU for transport.

wm.xmlv2.utils:encodeFinMessage

This service encodes block 4 of a FIN message to a base64 string. It extracts the block 4
contents from the input FIN message and encodes it to a base64 string.

Input Parameters

finMsg String The block 4 contents of the FIN message.

Output Parameters

encodedMsg String The base-64-encoded block 4 of the FIN message.

wm.xmlv2.utils:formatXMLV2

This service formats the XML contents of the Data PDU to a proper XMLv2 format, as
follows:

B Prefix (1 byte): the hexadecimal character Ox1f.

B Length (6 bytes): the length (in bytes) of the Signature and Data PDU fields. The
length is base-10 encoded as 6 ASCII characters, left padded with Os, if needed.

B Signature (24 bytes): the Signature computed on the Data PDU using the HMAC-
SHA256 algorithm, base-64 encoded. This signature authenticates the originator of
the Data PDU (the application or SAA), and guarantees the integrity of the Data PDU.
If this authentication is not required on the SAA side, the field must be filled with
NULL characters.

Note: SWIFT Module does not support signature generation and the signature field is
always filled with NULL characters.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 265

A Services

B Data PDU: the XML structure that contains the information relevant for processing
the document encoded in UTF--8 format. The first byte of this field must be the
character '<' (0x3C): byte-order marker is not supported.

Input Parameters

message String The Data PDU in XML format.

filename String The fully qualified file name where the generated XMLv2
message is added after generation.

Output Parameters

outMessage String The generated formatted XMLv2 message.

wm.xmlv2.utils:getDataPDUsFromFile

This service takes a batch file containing the Data PDUs as input and extracts all the Data
PDUs from the file. It also generates a string array of the Data PDUs.

Input Parameters

filePath String The fully qualified name of the batch file containing
multiple Data PDUs.

Output Parameters

DataPDUs String List The Data PDUs extracted from the batch file.

wm.xmlv2.utils:putinBatchFile

This service creates a batch file of the Data PDUs that is submitted to SAA for processing.

Input Parameters

message String The Data PDU in XML format that will be formatted and
added to the batch file.

filename String The fully qualified file name where the formatted Data
PDU will be added.

Output Parameters

outMessage String List Formatted Data PDU in XMLv2 format.

266 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

WmSWIFTCommon Package

This package contains common services that are used by different packages. This
package contains the following folders:

Folder Contains services you use to...

com.wm.common.CacheHandler Folder ~ Establish the security context for the message
partner from the shared cache.

com.wm.common.docs Folder Contains IS documents to be used by other SWIFT
Module packages.

com.wm.common.Init Folder Create user interface components for SWIFT
Module.

com.wm.common.services Folder Process inbound and outbound messages
transported using MQHA.

com.wm.common.Util Folder This folder contains various common utility
services.

wm.swift.doc Folder Imported document types and schema generated

from saa_2.xsd (provided by SWIFT).

com.wm.common.CacheHandler Folder

This folder contains services that establish the security context for the message partner
from the shared cache.

com.wm.common.CacheHandler.getContextForMessagePart
ner

This service retrieves the security context for the specified message partner from the
shared cache.

Input Parameters

messagePartner String The message partner specified for the message exchange.

Output Parameters

securityContext String The security context retrieved from the shared cache for
the message partner specified in the input.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 267

A Services

com.wm.common.CacheHandler.saveContextForMessagePar
tner

This service saves the security context for the message partner in the cache after the
initialization process is complete.

Input Parameters

messagePartner String The message partner specified for the message exchange.

securityContext String The security context retrieved from the shared cache for
the message partner you specified in the input.

Output Parameters

result String Saved security context in the shared cache.

com.wm.common.docs Folder

This folder contains IS documents to be used by other SWIFT Module packages.

com.wm.common.Init Folder

The services in this folder create user interface components for SWIFT Module.

com.wm.common.services Folder

The services in this folder perform various tasks such as:
B Create Trading Networks BizDocEnvelope for the MQ response.

B Retrieve the SAG response envelope and the response message from the MQ
response.

B Submit the MQ response, as well as any outgoing request, to SWIFT via Trading
Networks.

268 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

com.wm.common.services.createTNDocForMQResponse

This service creates a TN document type for the response received from MQHA. The TN
document type, created to represent the MQ response, contains two content parts:
msgcontent as xmldata and SAG envelope as sagenv.

Input Parameters

contextResponse String The MQ response.

Output Parameters

bizdoc Document Reference Trading Networks BizDocEnvelope
containing the SWIFT message.

com.wm.common.services.getEnvAndXMLReqFromMQResp
onse
This service breaks down the MQ response into a SAG envelope and a response message.

Input Parameters

mqResponse String The MQ response.

Output Parameters

sagenv String The SAG response envelope.

xmldata String The response message as XML data.

com.wm.common.services.getSagEnv

This service retrieves the sagenv from the bizdoc. The input bizdoc provided to this service
must have sagenv as one of the content parts.

Input Parameters

bizdoc Document Trading Networks BizDocEnvelope containing the
SWIFT message.

Output Parameters

sagenv String The SAG response envelope.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 269

A Services

com.wm.common.services.getSagRegEnvAsString

This service creates a string representation of the SAG response envelope. This service
internally uses wmFlatFile services to create a string sagenv.

Input Parameters

sagReqDoc Document Reference The SAG response envelope from the MQ
response.

Output Parameters

sagenv String The SAG response envelope.

com.wm.common.services.getXMLData

This service retrieves the SWIFT request or response XML data from the TN
BizDocEnvelope. The input bizdoc provided to this service must have xmldata as one of
the content parts.

Input Parameters

bizdoc Document Trading Networks BizDocEnvelope containing the
SWIFT message.

Output Parameters

xmldata String The SWIFT response or request XML data.

com.wm.common.services.handleContextResponse

This service saves the security context for the message partner obtained in the context
response from SWIFT, provided such a context has been successfully created.

Input Parameters

bizdoc Document Trading Networks BizDocEnvelope containing the
SWIFT message.

Output Parameters

None.

270 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

com.wm.common.services.submitContextResponse

This service routes the MQ response to Trading Networks.

Input Parameters

contextResponse String The MQ response.

Output Parameters

bizdoc Document Trading Networks BizDocEnvelope containing the
SWIFT message.

com.wm.common.services.submitMQResponseToTN

This service submits the MQ response to Trading Networks. This service adds sagenv,
correlationld and msgld as content parts of the bizdoc created for the XML data.

Input Parameters

xmldata String The message response as XML data.

sagenv String The SAG response envelope.

correlationld Object The IBM MQ correlation ID included in the JMS headers
of the response sent back to SAG.

msgld Object The IBM MQ message ID included in the JMS headers of

the request sent to the server application from SAG.

Output Parameters

bizdoc Object Trading Networks BizDoc object.

com.wm.common.services.submitRequestToTN

This service submits any outgoing request to SWIFT through Trading Networks.

Input Parameters

xmldata String The message response as XML data.
sagReqDoc Document Reference The SAG response envelope from the MQ
response.

Output Parameters

bizdoc Object Trading Networks BizDoc object.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 271

A Services

com.wm.common.Util Folder

This folder contains various common utility services.

com.wm.common.Util.createSagReqEnv

This service creates a SAG request envelope for the message partner and the security
context.

Input Parameters

messagePartner String The message partner specified for the message exchange.

securityContext String The security context retrieved from the shared cache for
the message partner you specified in the input.

Output Parameters

sagReqEnv Document Reference The SAG request envelope.

com.wm.common.Util.invokeMQService

This service invokes the MQ service identified by the service name.

Input Parameters

msgBodyByteArray ~ bytes Message payload for the MQ service in byte format.

serviceName String The name of the MQ service.

Output Parameters

responseByteArray bytes The response after invoking the MQ service.

com.wm.common.Util:migrateServices

This service iterates through all flow services in a particular package and replaces all
occurrences of old service names with the corresponding new service names from the
service map maintained by SWIFT Module. The service also creates a backup of the
previous version of the modified flow service, and stores it as flow.xml.previous.

Important! You must reload the package specified in the input parameters manually after
running the migration service for changes to take effect.

272 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Input Parameters

packageName

oldServiceNames

Output Parameters

String The name of the package where the migration utility will
look for flow services.

String List Old service names from the WmIPCore package.

results
oldServiceName
newServiceName
message

filesChanged

Document List Conditional. The results from the flow service
mapping.

String The name of the old service for which the result document
is created.

String Conditional. The name of the new service that replaces the
old one.

String Conditional. A message that this service returns when no
occurrences of the old service were found in the package.

String List Conditional. List of files in which the name of the old
service was replaced by the new service.

com.wm.common.Util.resolveNameSpaceAndEntity

This service resolves any namespace prefixes for the XML request. This service adds
namespace declarations for all SAG and SNL primitive prefixes encountered in the XML

message.

Input Parameters

xmldata

Output Parameters

String Input XML for which namespace resolution is required.

xmldata

String Formatted XML with declarations for namespace prefixes.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 273

A Services

wm.swift.doc Folder

This folder contains imported document types and schema generated from saa_2.xsd
(provided by SWIFT). This schema is used to format message envelopes in XML v2
format as specified by SWIFT.

WmEstdCommonLib Package

This package contains generic services that enable you to use various eStandards
Modules with webMethods Integration Server. SWIFT Module uses the
wm.estd.common.rec folder and the following services from this package:

B wm.estd.common.bizdoc:addErrorContentPart
B wm.estd.common.profile:getTPA

B wm.estd.common.ui:addSubmenu

B wm.estd.common.ui:removeSubmenu

B wm.estd.common.util:invokeService

B wm.estd.common.util:write ToFile

For detailed information about the folder and the services that SWIFT Module uses from
this package, see webMethods eStandards Modules Common Built-In Services Reference.

WmSWIFTNetClient Package

This package contains the elements (flow services, Java services, record descriptions, and
wrapper services) that support webMethods SWIFTNet client-side functionality. This
package contains the following folders:

Folder Contains services to...

wm.swiftnet.client.doc Folder The NS records that represent the SNL primitives
exchanged for FileAct and InterAct operations.

wm.swiftnet.client.init Folder Start and terminate the client process.

wm.swiftnet.client.mq Folder Send requests from your client application to SWIFT
over the MQ transport.

wm.swiftnet.client.property Folder Load properties specified in the

Integration Server_directory\ packages\
WmSWIFTNetClient\ config\ snl.cnf file.

wm.swiftnet.client.services Folder Exchange SNL primitives with SAG over RA.
wm.swiftnet.client.transport Folder Transfer files from your client application to SAG
using the FTA interface.

274 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Folder Contains services to...

wm.swiftnet.client.util Folder Various utility services.

wm.swiftnet.client.doc Folder

This folder contains the NS records that represent the SNL primitives exchanged for
FileAct and InterAct operations.

wm.swiftnet.client.init Folder

This folder contains the services that start and terminate the client process, and create the
user interface links for the SWIFTNet client configuration.

wm.swiftnet.client.init:printRemoteErrors

This service logs the standard output and standard error from the client process that is
connected to SAG. The errors are logged to the Integration Server console. This service
must be used only to trace an error and not used otherwise.

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.client.init:shutdown

This service is registered as a shutdown service for the WmSWIFTNetClient package. It
terminates the client process that is connected to SAG.

Input Parameters

None.

Output Parameters

None.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 275

A Services

wm.swiftnet.client.init:startup

This service starts a client process that connects to SAG. This client process connects to
SAG whenever a request needs to be sent over SWIFTNet.

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.client.mq Folder

This folder contains services that send requests from your client application to SWIFT
over the MQ transport.

wm.swiftnet.client.mq:processRequest

This service sends the XML request to SWIFT over the MQ transport. This service creates
the SAG envelope to be submitted to SWIFT.

Input Parameters

messagePartner String The message partner specified for the message exchange.

xmldata String The XML request message.

Output Parameters

responseXml String The response XML to be submitted to SWIFT.

wm.swiftnet.client.mq:sendToMQ

This service gets the sagenv and xmldata from the Trading Networks BizDocEnvelope and
creates an MQ request to be sent to SWIFT over the MQ transport.

Input Parameters

bizdoc Document The Trading Networks BizDocEnvelope containing the
SWIFT message.

Output Parameters

string String The MQ request to be sent to SWIFT over MQ.

276 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.swiftnet.client.property Folder

This folder contains a service that loads properties specified in the
Integration Server_directory\ packages\ WmSWIFTNetClient\ config\ snl.cnf file.

wm.swiftnet.client.property:.getProperty

This service retrieves the value of the specified property from the
Integration Server_directory\ packages\ WmSWIFTNetClient\ config\ snl.cnf file.

Input Parameters

propertyName String Property value to be retrieved.

Output Parameters

value String Value of the property.

wm.swiftnet.client.services Folder

This folder contains services that exchange SNL primitives with SAG over RA. The

wm.swiftnet.client.services:swArguments service must be invoked prior to invoking any other

services in this folder.

The services in this folder can be invoked in a predefined sequence to perform FileAct

and InterAct real-time and SnF operations. In essence the services in this folder are the

building blocks to perform higher level FileAct and InterAct operations.

wm.swiftnet.client.services:createContextRequest

This service requests SAG to create a security context. It sends the
SwSec:CreateContextRequest to SAG over RA and returns the
SwSec:CreateContextResponse received from SAG.

Input Parameters

SwSecCreateContext ~ Document Reference Request to create a security context.
Request

Output Parameters

SwSecCreateContext ~ Document Reference Response indicating success or failure of
Response security context creation in SAG.

error String Whether an error occurred. Valid values: true and false.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

277

A Services

errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:destroyContextRequest

This service requests SAG to destroy a security context. The service sends the
SwSec:DestroyContextRequest to SAG over RA and returns the
SwSec:DestroyContextResponse received from SAG.

Input Parameters

SwSecDestroyContex Document Reference Request to destroy a security context.
tRequest

Output Parameters

SwSecDestroyContex Document Reference Response indicating success or failure of

tResponse security context destruction in SAG.
error String Whether an error occurred. Valid values: true and false.
error XMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:exchangeFileRequest

This service requests SAG to perform a FileAct operation (real-time get file or put file,
and SnF put file). The information whether to put a file or get a file is specified in the
Sw:ExchangeFileRequest primitive. The service sends the Sw:ExchangeFileRequest to
SAG over RA and returns the Sw:ExchangeFileResponse received from SAG.

Input Parameters

SwExchangeFileReq ~ Document Reference Request to perform a FileAct operation.
uest

Output Parameters

SwExchangeFileResp Document Reference Response indicating success or failure of the
onse FileAct operation.

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Conditional. Error details received from SAG.

278 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.swiftnet.client.services:.exchangeRequest

This service requests SAG to send an InterAct message. The service sends the
Swint:ExchangeRequest to SAG over RA and returns the Swint:ExchangeResponse
received from SAG.

Input Parameters

SwintExchangeRequ Document Reference Request to exchange a synchronous request.
est

Output Parameters

SwintExchangeResp ~ Document Reference Synchronous response received.
onse

error String Whether an error occurred. Valid values: true and false.

error XMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:exchangeSnFRequest

This service requests SAG to send a SnF message. The service sends the
Sw:ExchangeSnFRequest to SAG over RA and returns the Sw:ExchangeSnFResponse
received from SAG.

Input Parameters

SwExchangeSnFReq Document Reference Request related to SnF protocol, for example,
uest acquire a queue.

Output Parameters

SwExchangeSnFRes ~ Document Reference Response returned by SWIFTNet.
ponse

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:fetchFileRequest

This service sends the Sw:FetchFileRequest to SAG over RA and returns the
Sw:FetchFileResponse received from SAG.

Input Parameters

SwFetchFileRequest ~ Document Reference Request to fetch a file from an SnF queue.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

279

A Services

Output Parameters

SwFetchFileResponse Document Reference Response returned by SWIFTNet for a fetch
file request.

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:getFileStatusRequest

This service sends the Sw:GetFileStatusRequest to SAG over RA and returns the
Sw:GetFileStatusResponse received from SAG.

Input Parameters

SwGetFileStatusReq ~ Document Reference Request to fetch a file from an SnF queue.
uest

Output Parameters

SwGetFileStatusRes Document Reference File transfer status response.
ponse

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:initRequest

This service sends the Sw:InitRequest to SAG over RA and returns the Sw:InitResponse
received from SAG. This is the initialization primitive exchanged before any other
primitives are exchanged.

Input Parameters

SwinitRequest Document Reference Initialization request primitive.

Output Parameters

SwinitResponse Document Reference Initialization primitive response.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Conditional. Error details received from SAG.

280 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.swiftnet.client.services:pullSnFRequest

This service sends the Sw:PullSnFRequest to SAG over RA and returns the
Sw:PullSnFResponse received from SAG.

Input Parameters

SwPullSnFRequest ~ Document Reference Request to pull a message from the SnF
queue.

Output Parameters

SwPullSnFResponse ~ Document Reference Response returned by SWIFTNet for a pull

request.
error String Whether an error occurred. Valid values: true and false.
error XMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:sendRequest

This service sends the Swint:SendRequest to SAG over RA and returns the
Swint:SendResponse received from SAG. This is the asynchronous version of
Swint:ExchangeRequest primitive.

Input Parameters

SwintSendRequest Document Reference Asynchronous request primitive.

Output Parameters

SwintSendResponse Document Reference Immediate response received from SAG,
without waiting for the actual response from SWIFTNet.

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:sendSynchronousRequest

This service formats the input request primitive into an XML string and then invokes the
wm.swiftnet.client.services:swCall service to send the request primitive to SAG over RA. The
response XML string received is then formatted into the appropriate response primitive.

Input Parameters

requestDocument Document Request primitive to be sent.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 281

A Services

requestDocNSName String NS record name of request primitive.

responseDocNSNam String NS record name of response primitive.
e

Output Parameters

responseDocument Document Response primitive received.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:signEncryptRequest

This service sends the SwSec:SignEncryptRequest to SAG over RA and returns the
SwSec:SignEncryptResponse received from SAG.

Input Parameters

SwSecSignEncryptR ~ Document Reference Request sign and/or encrypt payload.
equest

Output Parameters

SwSecSignEncryptR Document Reference Conditional. Response received from SAG.
esponse

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:swArguments

This service initializes the client application by invoking the SwArguments() function
defined in the SNL libraries. The service takes a String[] of arguments as input. The only
mandatory parameter to be passed is the SAGMessagePartner defined in SAG.

For example:

args[0] = "WmSWIFTNetClient"args[1] = "-SagMessagePartner"args[2] = "<message
partner name defined in SAG>"

Input Parameters

args String Array Initialization arguments to be passed to the SNL
libraries.

282 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Output Parameters

None.

wm.swiftnet.client.services:swCall

This service invokes the SwCall() function in the SNL libraries to send a request primitive

to SAG and returns the response primitive received from SAG.

Input Parameters

xmlRequest String Request primitive to be sent to SAG.

Output Parameters

xmlResponse String Response received from SAG.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:termRequest

This service sends the Sw:TermRequest to SAG over RA and returns the
Sw:TermResponse received from SAG.

Input Parameters

SwTermRequest Document Reference Session termination request to SAG.

Output Parameters

SwTermResponse Document Reference Session termination request to SAG.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:verifyDecryptRequest

This service sends the SwSec:VerifyDecryptRequest to SAG over RA and returns the
SwSec:VerifyDecryptResponse received from SAG.

Input Parameters

SwSecVerifyDecrypt ~ Document Reference Request to verify a signed/encrypted
Request message.

webMethods SWIFT Module Installation and User’s Guide Version 7.1

283

A Services

Output Parameters

SwSecVerifyDecrypt ~ Document Reference Message decryption response from SAG.
Response

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.services:waitRequest

This service sends the Swint:WaitRequest to SAG over RA and returns the
Swint:WaitResponse received from SAG. This is the primitive exchanged to retrieve a
response asynchronously.

Input Parameters

SwintWaitRequest Document Reference Request to retrieve response asynchronously.

Output Parameters

SwIntWaitResponse ~ Document Reference Asynchronous response received.
error String Whether an error occurred. Valid values: true and false.

error XMLString String Conditional. Error details received from SAG.

wm.swiftnet.client.transport Folder

The services in this folder transfer files from your client application to SAG using the FTA
interface.

wm.swiftnet.client.transport.FTA:generateCompanionFile

This service generates a companion .par file with the specified inputs.

Input Parameters

companionFileDocu ~ Document Companion file content as required by the SWIFT
ment documentation.

outputDirectory String The directory in which the companion .par file is created.
fileName String The name of the companion .par file to be created with the
tile.

Output Parameters

None.

284 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.swiftnet.client.transport.FTA:scanForReports

This service scans the input directory for the report files and submits them to Trading
Networks. This directory must point to the location where SAG will drop all the report
tiles generated for the file transfer.

Input Parameters

dir String The input directory for the report files generated for the
files transfer.

Output Parameters

None.

wm.swiftnet.client.transport.FTA:submitToTN

This service submits the file to Trading Networks. This service should be used only for
submitting report files and companion files that are in XML format. Before running this
service, make sure to import in Trading Networks the document types for report.xml
(FTADocTypes.dat), using the import document types feature of Trading Networks.

Input Parameters

filename String The name of the file to submit to Trading Networks.

Output Parameters

None.

wm.swiftnet.client.util Folder

This folder contains various utility services.

wm.swiftnet.client.util:formatXML

This service formats an XML string by appending the following namespace declarations:
“Sw,” “Swint,” “SwGbl,” and “SwSec.” If these namespaces are not appended to the root
tag, the incoming XML response primitives cannot be converted into IData objects in
Integration Server.

Input Parameters

xmlRequest String XML string to be formatted with namespaces.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 285

A Services

Output Parameters

formatted XML String XML string with namespaces appended after the root tag.

WmSWIFTNetServer Package

This package contains the elements (flow services, Java services, record descriptions, and
wrapper services) that support webMethods SWIFTNet server-side functionality. This
package contains the following folders:

Folder Contains services you use to...

wm.swiftnet.server.doc Folder The NS records that represent the SNL primitives
exchanged for FileAct and InterAct operations.

wm.swiftnet.server.init Folder Start and terminate the server process.

wm.swiftnet.server.mq Folder Receive requests from SAG over the MQ transport.

wm.swiftnet.server.property Folder This folder contains services that load properties
specified in the

IntegrationServer_directory \ packages\
WmSWIFTNetServer \ config\ snl.cnf file.

wm.swiftnet.server.services Folder Handle incoming requests.

wm.swiftnet.server.util Folder Various utility services.

wm.swiftnet.server.doc Folder

This folder contains the NS records that represent the SNL primitives exchanged for
FileAct and InterAct operations.

wm.swiftnet.server.init Folder

This folder contains services that start and terminate the server process.

wm.swiftnet.server.init:printRemoteErrors

This service logs the standard output and standard error from the server process that is
connected to SAG. The errors are logged to the Integration Server console. This service
must be used only to trace an error and not used otherwise.

Input Parameters

None.

286 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Output Parameters

None.

wm.swiftnet.server.init;:shutdown

This service is registered as a shutdown service for the WmSWIFTNetClient package. It
terminates the server process that is connected to SAG.

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.server.init:startup

This service starts a server process that connects to SAG. The server process is registered
as the server application for the message partner specified in the

Integration Server_directory\ packages\ WmSWIFTNetServer\ config\ snl.cnf file. The
following primitives are exchanged with SAG on startup in this order:

1 Sw:HandlelnitRequest
SwSec:CreateContextRequest
SwSec:CreateContextResponse
Sw:SubscribeFileEventRequest

Sw:SubscribeFileEventResponse

D o1 AW

Sw:HandlelnitResponse

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.server.mq Folder

The services in this folder receive requests from SAG over the MQ transport.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 287

A Services

wm.swiftnet.server.mg.inbound.getinfoFromNotificationDoc

This service fetches the MQ message body and message ID for the document.

Input Parameters

docName String The name of the document.

Output Parameters

msgBodyByteArray ~ Object The MQ message body.
msgldByteArray Object The message Id.

wm.swiftnet.server.mg.inbound.handleSWIFTRequest

You must configure this service for the notification document triggered for an inbound
request. This service retrieves the message body and message ID from the incoming
document. It then adds the message body as XML data content part, and the message ID
as msgld content part to the TN BizDocEnvelope. Finally, this service submits the
document to Trading Networks for further processing.

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.server.mq.trp.respond

Sends the server responses back to SWIFT through the MQ transport.

Input Parameters

bizdoc Document The Trading Networks BizDocEnvelope that contains
the SWIFT message.

Output Parameters

None.

288 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.swiftnet.server.mqg.util.sendToMQ

This service sends the server requests to SAG through the MQ transport.

Input Parameters

bizdoc

Output Parameters

Document The Trading Networks BizDocEnvelope that contains
the SWIFT message.

string

Byte Array The response content.

wm.swiftnet.server.property Folder

This folder contains services that load properties specified in the
Integration Server_directory\ packages\ WmSWIFTNetServer\ config\ snl.cnf file.

wm.swiftnet.server.property:getCommonProperties

This service retrieves the most commonly used properties from the
Integration Server_directory\ packages\ WmSWIFTNetServer\ config\ snl.cnf file.

Input Parameters

None.

Output Parameters

SAGMessage
Partner

server_pki_profile

server_pki_password

Sign,Decrypt and
Authorization

encryptDN
cryptoMode

String Must correspond to a “Server” type message partner
defined in SAG.

String User name of the profile defined in SAG.

String Password associated with the user name used to unlock
the security information in SAG.

String Values used for populating SwSec:CreateContextRequest
primitive exchanged during server initialization. Valid values:
True and False.

String Distinguished Name to be used for encryption operations.

String Specifies whether encryption operations are performed
automatically by SAG/SNL. Valid values: Automatic and Manual.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 289

A Services

wm.swiftnet.server.property:.getProperty

This service retrieves the value of the specified property from the
Integration Server_directory\ packages\ WmSWIFTNetServer\ config\snl.cnf file.

Input Parameters

propertyName String Property value to be retrieved.

Output Parameters

value String Value of the property.

wm.swiftnet.server.property:listProperties

This service retrieves all the properties specified in the
Integration Server_directory\ packages\ WmSWIFTNetServer\ config\ snl.cnf file.

Input Parameters

None.

Output Parameters

properties Document All properties in the snl.cnf file.

wm.swiftnet.server.property:reloadProperties

This service reloads all the properties specified in the configuration file:

Integration Server_directory\ packages\ WmSWIFTNetServer\ config\snl.cnf. This could
be useful if more properties are added or existing properties have been changed and the
changes need to be reflected in Integration Server immediately.

Input Parameters

None.

Output Parameters

properties Document All properties reloaded from the snl.cnf file.

290 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

wm.swiftnet.server.property:setProperty

This service sets the property specified in the input. You can set the properties in the
snl.cnf file using this service.

Input Parameters

propertyName String Property value to be set.
value String Value of the property.

Output Parameters

None.

wm.swiftnet.server.services Folder

The services in this folder handle incoming requests.

wm.swiftnet.server.services:handleRequest

The SwCallBack function in WmSWIFTNetServer.dll invokes this service when a request
is received from SAG. This service recognizes the incoming request primitive as a TN
document type and invokes the processing rule specified by the user. The output of the
service specified by the user for the processing rule must contain the string variable
xmlResponse that is send back to SAG as the response to the incoming request.

Input Parameters

xmlRequest String Incoming request primitive.
SwSecUserDN String User DN returned by security context created in SAG at
startup.

Output Parameters

xmlResponse String Outgoing response primitive.

wm.swiftnet.server.services:swCall

This service invokes the SwCall() function in the SNL libraries to send a request primitive
to SAG. The response primitive received from SAG is then output to the pipeline.

Input Parameters

xmlRequest String Request primitive to be sent to SAG.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 291

A Services

SwSecUserDN String User DN returned by security context created in SAG at
startup.

Output Parameters

xmlResponses String Array Outgoing response primitive.
error String Whether an error occurred. Valid values: true and false.
errorXMLStrings String Array Conditional. Error details received from SAG.

wm.swiftnet.server.util Folder

This folder contains utility services.

wm.swiftnet.server.util:formatXML

This service formats an XML string by appending the following namespace declarations:
“Sw,” “Swint,” “SwGbl,” and “SwSec. If these namespaces are not appended to the root
tag, the incoming XML response primitives cannot be converted into IData objects in
Integration Server.

Input Parameters

xmlRequest String Request primitive to be sent to SAG.

Output Parameters

formatted XML String XML string with namespaces appended after the root tag.

SWIFTNet Server and Client Errors

The following status and error messages may occur during SWIFTNet client or server
processing.

Error

Code Type Description

0 SWLIB_E_SUCCESS The function is successfully executed.

1 SWLIB_E_INTERNAL An error occurred that does not fit into any of the

other codes categories. Normally, this is an
internal error.

2 SWLIB_E IS CLIENT Returned by SwServer if SwCall was called before,
indicating the application is a client.

292 webMethods SWIFT Module Installation and User’s Guide Version 7.1

A Services

Error

Code Type Description

3 SWLIB_E _CALLED_TW Indicates that a function is called twice. Returned

ICE by SwServer or SwArguments.
4 SWLIB_E_NO_CALLBA Indicates that mandatory callback functions are
CKS not registered when SwServer is called.

5 SWLIB_E_BAD DLL Indicates that some mandatory functions are not
implemented in the libraries. If the libraries
provide only a client implementation, the server
functions also return this error code.

6 SWLIB_E_ACCESS_DL A library cannot be loaded, either because the

L access rights are not correctly set, or because the
library does not exist, or because the loaded file is
not a library.

7 SWLIB_E_ACCESS _CF The given category refers to one or more

G configuration files. This error code is returned
when at least one configuration file cannot be
read, either because the access rights are not
correctly set, or because one or more files do not
exist.

8 SWLIB_E_NO_VERSIO The given category has no corresponding libraries.

N

9 SWLIB_E_FORMAT_CF One or more configuration files do not have the

G expected format.

10 SWLIB_E_FORMAT_AR Returned only by SwArguments: some arguments

G do not have the correct format.

11 SWLIB_E_PREVIOUS_E The call of the function is rejected because a

RROR previous operation failed and returned an error.

12 SWLIB_E_RMI_ERROR SWIFT Module internal error.

Services and the SNL Request and Response Primitives

The SWIFT Module services make calls to the following SNL request and response
primitives that are involved in communication between the client module, the server
module, and SWIFTNet:

Sw:ExchangeFileRequest Sw:ExchangeFileResponse
Sw:ExchangeSnFRequest * Sw:ExchangeSnFResponse
Sw:FetchFileRequest Sw:FetchFileResponse
Sw:HandleFileEventRequest Sw:HandleFileEventResponse

webMethods SWIFT Module Installation and User’s Guide Version 7.1 293

A Services

Sw:HandleFileRequest
Sw:HandlelnitRequest
Sw:HandleSnFRequest
Sw:InitRequest
Sw:PullSnFRequest
SwSec:CreateContextRequest
SwSec:DestroyContextRequest
Sw:SubscribeFileEventRequest
Sw:TermRequest
Swint:ExchangeRequest
Swint:HandleRequest
Swint:SendRequest
Swint:WaitRequest

Sw:HandleFileResponse
Sw:HandlelnitResponse
Sw:HandleSnFResponse
Sw:InitResponse
Sw:PullSnFResponse
SwSec:CreateContextResponse
SwSec:DestroyContextResponse
Sw:SubscribeFileEventResponse
Sw:TermResponse
Swint:ExchangeResponse
Swint:HandleResponse
Swint:SendResponse

Swint:WaitResponse

294

webMethods SWIFT Module Installation and User’s Guide Version 7.1

B XML Parsing Templates for SWIFT FIN Messages

B OV I I et 296
B SWIFT MeSSage Datattt e 297
B Parsing Template StrUCtUIE 299

webMethods SWIFT Module Installation and User’s Guide Version 7.1 295

B XML Parsing Templates for SWIFT FIN Messages

Overview

SWIFT Module provides XML parsing template files to define the structure of SWIFT FIN
messages. Each parsing template describes the message using an XML syntax, and each
parsing template defines a unique SWIFT message. SWIFT Module uses the parsing
template when it receives a message of that type.

Important! XML parsing templates are used only when receiving messages in Integration
Server.

To fully define the entire set of SWIFT FIN messages, a parsing template is required for
each type of SWIFT message. The parsing templates are installed in the appropriate
category and version folder. SWIFT Module reads the parsing template as needed at run
time.

The name of each parsing template is based on the definition of the message type it
contains. Each message type has a unique ID, which is usually a three-digit number.
Typically, the name of a parsing template follows a convention that indicates the MT
defined in the parsing template. The following table shows the format used for the names
of parsing templates:

Format of Parsing
Template Name Used for...

swiftmtF21.xml Incoming ACK/NACK messages returned by the SWIFT system.
Any service message will follow this file name format.

swiftmtnnn.xml All other incoming messages types and all outgoing message.
SWIFT Module looks for a specific parsing template file for the

where nnn is the specific type of message, for example, swiftmt101.xml.

unique id for the
message type.

The parsing templates that are provided with SWIFT Module are a mixture of messages
that conform to the older SWIFT message standard (ISO 1775) and the new standard (ISO
15022). SWIFT Module can support both standards because of the flexible parsing
template syntax. As a result, when SWIFT issues an update of their message standards,
you can define new parsing templates for new SWIFT message formats or update
existing parsing templates for updated SWIFT message formats.

The wm.fin.trp:receiveMessage converts messages that are received from SWIFT into
Integration Server document structures. Likewise, the wm.fin.trp:sendMessage service
converts Integration Server documents into SWIFT FIN messages, so that the messages
can be sent to SWIFT.

296 webMethods SWIFT Module Installation and User’s Guide Version 7.1

B XML Parsing Templates for SWIFT FIN Messages

SWIFT Message Data

The following message is a sample of MT 101. Users unfamiliar with the SWIFT format
should take time to study this data. Alternate blocks and repeating sequences within
block 4 have been highlighted for clarity.

{1:FO1PASOBEBOAXXX0071007172}{2:01011509010306LRLRXXXX4A00000009622301030616
09N}

{3:{108:MT101 005 OF 007}}{4:

:20:00054

:50H:/12345-67891

WALT DISNEY COMPANY

:30:000228

:21:DP951101TRSGB

:32B:USD132546,93

:50L:WALT DISNEY PRODUCTION HOLLYWOOD CA
:57A:TESTGBVT

:59:/0010499

TRISTAN RECORDING STUDIOQS

35 SURREY ROAD

BROMLEY, KENT

:71A:0UR

:21:WDC951101RPCUS

:32B:USD377250,

:50L:WALT DISNEY COMPANY LOS ANGELES, CA
:57A:TESTUSVT

:59:/26351-38947

RIVERS PAPER COMPANY

37498 STONE ROAD

SAM RAMON, CA

:71A:0UR
-1{5:{MAC:711DDD87}{CHK:A66AB15COE3F}{TNG:}}{S: {SAC:}{COP:P}}

Sample SWIFT Message Definition

The following tables provide the definition of block 4 in SWIFT message 101. Blocks 1, 2,
3 and 5 are not shown because they have a fixed definition for all message types.

Field Name Mandatory
21IR No

50L No

50H No

52A or No

52C

51A No

30 Yes

webMethods SWIFT Module Installation and User’s Guide Version 7.1 297

B XML Parsing Templates for SWIFT FIN Messages

Field Name Mandatory
25 No

Field Name Mandatory Notes
21 Yes

21F No

23E Yes Field can repeat multiple times.
32B Yes

50L No

50H No

52A No

or

52C

56A Yes

or

56C

or

56D

57A No

or

57C

or

57D

59 Yes

70 No

77B No

33B No

71A Yes

25A No

36 No

298 webMethods SWIFT Module Installation and User’s Guide Version 7.1

B XML Parsing Templates for SWIFT FIN Messages

Parsing Template Structure

All SWIFT FIN messages are essentially a sequence of fields that are contained within
blocks. The message syntax allows for the fact that blocks and fields can be optional, and
that blocks can be nested to any level, can repeat, or embed sub-messages. Every SWIFT
message consists of one to five blocks as shown in the following table.

Block ID Block Name Mandatory Description

1 Basic Header Yes Contains fixed length, untagged fields.

2 Application No Contains fixed length, untagged fields.
Header

3 User Header No Contains tagged, delimited fields that are

mapped to individual fields.

4 Text No Contains tagged, delimited fields that are
mapped to individual fields within a sub
structure. This block can contain nested blocks
of fields that are mapped into further sub-
structures. It also can contain repeating
sequences of fields, which are mapped to a
sequence of structures.

5 Trailers No Contains delimited, tagged fields that are
mapped to individual fields within a sub
structure.

Each of these five basic blocks is enclosed in braces {....} and is identified by a single digit.
Although defined as an optional block, in practice block 4 is always present because it
contains the actual message text.

Despite these complexities, the parsing templates use just two main elements: block and
lineAttribute.

Sample Parsing Template

A sample parsing template is illustrated below:

<?xml version="1.0"7>
<plock id="101" isMandator y = "true" isList ="false">

<lineAttribute id="1:" isMandatory="true" extract Hint="BR,{,},T,S"
idHint="FL,0,2" B2BMap="" EAImap="B1l" />
<lineAttribute id="2:" isMandatory="false" extractHint="BR,{,},T,S"

idHint="FL,0,2" B2BMap="" EAImap="B2" />
<pTock id="3:" isMandatory="true" isList="false" termString=
extractHint="BR,{,},T,S" idHint="FL,0,2" EAImap="B3">

<lineAttribute id="103:" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,4" B2BMap="" EAImap="0103" />

<lineAttribute id="113:" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,4" B2BMap="" EAImap="0113" />

<lineAttribute id="108:" isMandatory="false" extractHint="BR,{,},T,S"

webMethods SWIFT Module Installation and User’s Guide Version 7.1 299

B XML Parsing Templates for SWIFT FIN Messages

idHint="FL,0,4" B2BMap="" EAImap="0108" />
<lineAttribute id="119:" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,4" B2BMap="" EAImap="0119" />
<lineAttribute id="115:" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,4" B2BMap="" EAImap="0115" />
</block>
<block id="4:\r\n" isMandatory="false" isList="false" termString="\r\n"
extractHint="BR,{,-},T,S" idHint="FL,0,4" EAImap="B4">
<lineAttribute id=":20:" isMandatory="true" extractHint="DL,:,T,S"
idHint="FL,0,4" B2BMap="" EAImap="M20" />
<lineAttribute id=":21R:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="021R" />
<lineAttribute id=":50L:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="050L" />
<lineAttribute id=":50H:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="050H" />
<lineAttribute id=":52A:,:52C:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="052A,052C" />
<lineAttribute id=":51A:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="051A" />
<lineAttribute id=":30:" isMandatory="true" extractHint="DL,:,T,S"
idHint="FL,0,4" B2BMap="" EAImap="M30" />
<lineAttribute id=":25:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,4" B2BMap="" EAImap="025" />
<plock id="B4B" isMandatory="true" isList="true" termString="\r\n"
EAImap="B4B">
<lineAttribute id=":21:" isMandatory="true" extractHint="DL,:,T,S"
idHint="FL,0,4" B2BMap="" EAImap="M21" />
<lineAttribute id=":21F:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="021F" />
<block id="B423E" isMandatory="false" isList="true"termString="\r\n"
EAImap="B423E">
<TineAttribute id=":23E:" isMandatory="true"
extractHint="DL,:,T,S" idHint="FL,0,5" B2BMap="" EAImap="023E"/>
</block>
<lineAttribute id=":32B:" isMandatory="true" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="M32B" />
<lineAttribute id=":50L:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="050L" />
<lineAttribute id=":50H:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="050H" />
<lineAttribute id=":52A:,:52C:" isMandatory="false"
extractHint="DL,:,T,S" idHint="FL,0,5" B2BMap="" EAImap="052A,052C" />
<lineAttribute id=":56A:,:56C:,:56D:" isMandatory="false"
extractHint="DL,:,T,S" idHint="FL,0,5" B2BMap="" EAImap="056A,056C,056D" />
<lineAttribute id=":57A:,:57C:,:57D:" isMandatory="false"
extractHint="DL,:,T,S" idHint="FL,0,5" B2BMap="" EAImap="057A,057C,057D" />
<lineAttribute id=":59:" isMandatory="true" extractHint="DL,:,T,S"
idHint="FL,0,4" B2BMap="" EAImap="M59" />
<lineAttribute id=":70:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,4" B2BMap="" EAImap="070" />
<lineAttribute id=":77B:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="077B" />
<TineAttribute id=":33B:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="033B" />
<lineAttribute id=":71A:" isMandatory="true" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="M71A" />

300 webMethods SWIFT Module Installation and User’s Guide Version 7.1

B XML Parsing Templates for SWIFT FIN Messages

<TineAttribute id=":25A:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,5" B2BMap="" EAImap="025A" />
<lineAttribute id=":36:" isMandatory="false" extractHint="DL,:,T,S"
idHint="FL,0,4" B2BMap="" EAImap="036" />
</block>
</block>
<plock id="5:" isMandatory="false" islList="false" termString="\r\n"
extractHint="BR,{,},T,S" idHint="FL,0,2" EAImap="B5">
<lineAttribute id="MAC" isMandatory="true" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="MMAC" />
<lineAttribute id="CHK" isMandatory="true" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="MCHK" />
<lineAttribute id="TNG" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="0TNG" />
<lineAttribute id="PDE" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="OPDE" />
<lineAttribute id="SYS" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="0SYS" />
<lineAttribute id="PDM" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="OPDM" />
<lineAttribute id="DLM" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="0DLM" />
<lineAttribute id="PAC" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="OPAC" />
<lineAttribute id="MRF" isMandatory="false" extractHint="BR,{,},T,S"
idHint="FL,0,3" B2BMap="" EAImap="OMRF" />
</block>
</block>

Block Syntax of a Parsing Template

The block elements in the SWIFT parsing template define the blocks in the SWIFT
message. The syntax of a block directive is shown below. (Note that optional parameters
are shown in square braces [].)

<block id="7d" isMandatory="truelfalse" isList="truel|false"

[termString="string"] [EAImap="string"] [[extractHint="hint" idHint="hint"]
[ToadBlockHint="hint" blockPointer="pointer"]]

For the first (outer most) block directive, only the mandatory parameters are supplied.
The first block directive identifies the entire message, which translates to the top level
Enterprise document type. The syntax of the first block directive always takes the
following syntax:

<block id="nnn" isMandatory="true" isList="false">
where nnn is the SWIFT message type number. This number must match the number in

the parsing template file name, for example, for MT 101, the value of nnnmust be 101 in
the file swiftmt101.xml.

For all subsequent blocks, the bTock directive requires optional parameters. The full set of
parameters are described below.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 301

B XML Parsing Templates for SWIFT FIN Messages

Elements

Values

Description

id

block id

The block number in the SWIFT message, including
delimiting characters. For the first block directive this
contains the message type ID.

isMandatory

true | false

false—The block is optional and is not required for the
message to be valid.

true—The block is mandatory in an incoming message
or the message will fail validation.

isList

true | false

false—Only one instance of the block can occur.

true—The block can repeat one or more times.

termString

\r (carriage

Characters that occur at the end of the block. Block 4

return) must be terminated with a carriage return, plus line
. feed. Blocks 1, 2, and 3 are not terminated with a
\n (line . .
carriage return plus line feed and the value of
feed) . . o
termString should be an empty string (termString="").
EAImap document Represents the name of the structure in the document
structure that the SWIFT message block is mapped to or from. By
name convention, the EAImap value for blocks is prefixed
with “B.”
extractHint Parameter The first member must be BR, block is enclosed in
list braces. The syntactical clue used to identify the

beginning and end of blocks.

B Incoming message—extractHint strips block
markers from the raw data.

B Outgoing message—extractHint specifies the
padding characters to apply to form a syntactically
correct message block.

Note: The “braces” used to enclose blocks can comprise
any characters, such as {...... blockdata......-}
or:16R:TRADE...bTockdata.....:16S: TRADE

For a full explanation of this element, see “Hint
Processing” on page 305.

302

webMethods SWIFT Module Installation and User’s Guide Version 7.1

B XML Parsing Templates for SWIFT FIN Messages

Elements Values Description
IdHint Parameter The first member must be FL. Tag is fixed length. Or EH
list tag is derived from the extractHint.

Syntactical clue used to extract the tag that identifies
the block extracted using the extractHint.

B FLisusually used and strips the first few characters
from the remaining raw data.

B EH extracts the first few characters from the block
marker stripped by the extract hint. This is used
where the block delimiters are themselves a string,
such as, 16R:TRADE.

For SWIFT Module to identify the block correctly, the
text returned by idHint must match the value in the
block ID element.

For a full explanation of this element, see “Hint
Processing” on page 305.

ToadBlockHin Parameter The first member must be FL, tag is fixed length. Used

t list for embedded messages, such as in n92, n95 and n9%6.
These messages embed block 4 of a previously
processed message. The embedded message can be any
of the SWIFT message types.

ToadBlockHint indicates the sub-template that must be
embedded in the current parsing template whenever an
embedded message is received. It extracts the message
type number (100, 101, 521 etc.) from the data returned
by a preceding TineAttribute.

For a full explanation of this element, see “Hint
Processing” on page 305.

Note: 1oadBlockHint must be used with blockPointer. If
these elements are specified, extractHint and idHint
are omitted.

blockPointer 4:\r\n Used along with ToadBlockHint. Specifies that block 4 is
to be included from the embedded parsing template.

Line Attribute Syntax of a Parsing Template

The TineAttribute elements typically define a single field in the message, although they
are also used in the generic parsing template to include an entire block of fields. The
syntax of the TineAttribute directive is shown below.

<pTlock id="7d" isMandatory="truel|false"

webMethods SWIFT Module Installation and User’s Guide Version 7.1 303

B XML Parsing Templates for SWIFT FIN Messages

EAImap="string" extractHint="hint" idHint="hint"
[blockLoadField="true"]>

Note: Note that optional parameters are shown in square braces [].

Elements Values Description
id field id The field tag in the SWIFT message, including
delimiting characters. Mutually exclusive fields are
ot depicted as a comma separated list (see fields 52, 56
field id list and 57 in the example parsing template above).

isMandatory

true / false

Specifies if the field represented by the
TineAttribute must be present in an incoming
message.

B false—The lineAttribute is optional and is not
needed for the message to be considered valid.

B true—The lineAttribute must be present or the
message will fail validation.

In an outgoing message, the corresponding field in
the Enterprise document (specified by the EAImap
element) must be populated, or the message will
fail validation.

EAImap

documentfield
name

or

documentfield
name list

The name of the field in the Enterprise document
that the 1ineAttribute is mapped to or from. By
convention, the EAImap value for 1ineAttributes
are prefixed with “O” for optional fields or “M” for
mandatory fields.

Mutually exclusive fields are depicted as a comma
separated list that must match the field ID list.

extractHint

Parameter list

The first member must be BR; field is enclosed by
braces. DL —Field is delimited. CK—Field contains
the entire block data in a single chunk.

Note: CK is used for the generic parsing template
only.

Syntactical clue used to identify the beginning and
end of fields. For an incoming message,
extractHint is used to identify the end of the field
data and to strip any braces from the raw data. For
a full explanation of this element, see “Hint
Processing” on page 305.

304

webMethods SWIFT Module Installation and User’s Guide Version 7.1

B XML Parsing Templates for SWIFT FIN Messages

Elements Values Description

idHint Parameter list ~ The first member of which must be FL, ID is fixed

length, or CK, ID will not be extracted as the field
contains the entire block in a single chunk.

Syntactical clue used to identify and strip the ID of
the field extracted using the extractHint. The
idHint is applied to the raw data line and typically
uses a fixed length parameter to return the first few
characters of the data.

For SWIFT Module to identify the field correctly,
the text returned by idHint using FL must match the
value in the TineAttribute ID element. For a full
explanation of this element, see “Hint Processing”

on page 305.
blockLoadFiel true (if Optional element that causes the TineAttribute to
d specified) be referenced by a subsequent 1oadBlockHint

directive. blockLoadField must precede
ToadBlockHint in the parsing template.

Hint Processing

ExtractHint, idHint, and 1oadBlockHint are used in block and 1ineAttribute directives.
The full syntax is provided in the following sections.

Braced fields—Used where the data is enclosed in one or more bracing characters BR,
<open brace characters>, <close brace characters>, <tag flag>, <tag position>.

Delimited fields—Used where fields are delimited by a single character DL,
<delimiting character>, <tag flag>, <tag position>

Chunk data—Used where data is treated as a single chunk, without further parsing
CK, <tag flag>, <tag position> or extractHint CK[, <from position>, <to position>] for
idHint.

Fixed length—Used where data occupies a fixed number of characters FL, <from
position>, <to position>.

Extract hint—Used to extract a fixed number of characters from the extract hint EH,
<from position>, <to position>.

The remaining parameters are provided in the following table:

Parameter Values Description

open brace any sequence of The character(s) used to identify the beginning
character characters of the block or field

close brace any sequence of The character(s) used to identify the end of the
character characters block or field

webMethods SWIFT Module Installation and User’s Guide Version 7.1 305

B XML Parsing Templates for SWIFT FIN Messages

Parameter Values Description

delimiting any character A single character that separates fields

character

from position numeric Starting character position used to extract fixed
character length data from the raw data after the block

characters have been stripped off. First
character is position 0.

to position numeric Last character position plus one used to extract
character fixed length data.
tag flag TorN T (tagged)—Field tag is included with the data.
N (not tagged) —Data does not include the tag
field
tag position SorE S (start)—Data tag precedes the data.

E (end)—Data tag follows the data.

Miscellaneous Notes

The following notes should be read and understood before attempting to maintain
webMethods SWIFT Module parsing templates.

B While SWIFT defines block 1 as the only mandatory block, in general the parsing
templates define blocks 1 through 4 as mandatory.

B Individual optional repeating fields must be defined as a mandatory field within an
optional block.

B When loadBlockHint /blockPointer isused, isMandatory must be true and isList
must be false.

B If extractHint uses chunk parameter (CK), idHint must also be CK.

ToadBlockField and associated 1oadBlockHint /blockPointer can only occur once in
the parsing template.

B Block 3 must include field 108. This is required to correctly process ACK/NACK
messages received from the SWIFT network.

306 webMethods SWIFT Module Installation and User’s Guide Version 7.1

C Administering webMethods SWIFT Module in a

Cluster
B \What Is webMethods Integration Server Clustering?, 308
B SWIFT Module in a Clustered Environment 308
B Clustering Implementation Considerationsc.o i 311

webMethods SWIFT Module Installation and User’s Guide Version 7.1 307

C Administering webMethods SWIFT Module in a Cluster

What Is webMethods Integration Server Clustering?

Clustering is an advanced feature of the webMethods product suite that substantially
extends the reliability, availability, and scalability of webMethods Integration Server.

Clustering accomplishes this by providing the infrastructure and tools to deploy multiple
Integration Servers as if they were a single virtual server and to deliver applications that
leverage that architecture.

With clustering, you get the following benefits:

B Scalability: Without clustering, only vertical scalability is possible. That is, increased
capacity requirements can only be met by deploying on larger, more powerful
machines, typically housing multiple CPUs. Clustering provides horizontal
scalability, which allows virtually limitless expansion of capacity by simply adding
more machines of the same or similar capacity.

B Availability: Without clustering - even with expensive Fault-Tolerant systems - a failure
of the system (hardware, java runtime, or software) may result in unacceptable
downtime. Clustering provides virtually uninterrupted availability by deploying
applications on multiple Integration Servers; in the worst case, a server failure
produces degraded but not disrupted service.

B Reliability: Unlike a server farm (an independent set of servers), clustering provides
the reliability required for mission-critical applications. Distributed applications must
address network, hardware, and software errors that might produce duplicate (or
failed) transactions. Clustering makes it possible to deliver “exactly once” execution
as well as checkpoint/restart functionality for critical operations.

For details on Integration Server clustering, see the Integration Server clustering guide
for your release. See “About this Guide” for specific document titles.

SWIFT Module in a Clustered Environment

Clustering Requirements for Each Integration Server in a Cluster

The requirements of each Integration Server in a given cluster are given below:
B All Integration Servers in a cluster must be of the same version.
B All SWIFT Module instances in a cluster must be of the same version.

B All the SWIFT Module packages on one Integration Server must be replicated to all
other Integration Servers in the cluster.

B Each SWIFT Module service must appear on all servers in the cluster so that any
Integration Server in the cluster can handle the request identically.

308 webMethods SWIFT Module Installation and User’s Guide Version 7.1

C Administering webMethods SWIFT Module in a Cluster

If you allow different Integration Servers to contain different services, you will not
derive the full benefits of clustering. For example, if a client requests a service that
resides on only one server, and that server is unavailable, the request cannot be
successfully redirected to another server.

Clustering Requirements When Installing SWIFT Module Packages

For each Integration Server in the cluster, use the standard SWIFT Module installation
procedure for each machine, as described in Chapter 2, “Installing webMethods SWIFT
Module”.

You must installSWIFT Module on each host in the cluster. Each installation must be
identical.

Configuring SWIFT Module in a Clustered Environment

When you configure SWIFT Module - that is, when you use it to create packages of
generated services - you must ensure that each Integration Server in the cluster contains
an identical set of packages. You can create custom packages of generated services of
SWIFT Module on one host and use package replication to publish custom packages to
each of the other hosts. For information on package replication, see the Integration Server
administration guide for your release. See “About this Guide” for specific document
titles.

Note: The following sections assume that you have already configured the Integration
Server cluster.

Replicating Packages and Configuration Information to Integration Servers

Each Integration Server in the cluster should contain an identical set of packages that you
define using SWIFT Module. To ensure consistency, make sure that you create all
packages on one server and replicate these packages to the other servers. If you allow
different servers to contain different packages, you will not derive the full benefits of
clustering. For example, if a Trading Networks processing rule requests a service that
resides in only one server, and that server is unavailable, the request cannot be redirected
to another server.

SWIFT Module Configuration Information

SWIFT Module stores configuration information updated in the SWIFTNet Client
Configuration and SWIFTNet Server Configuration screens as configuration files within
packages, and the imported BIC, BICPIusIBAN, IS and SR lists are stored in the database.
The Trading Networks-related configuration information is stored in the database (JDBC
pools).

The SWIFTNet Client Configuration and SWIFTNet Server Configuration information
includes the following items:

webMethods SWIFT Module Installation and User’s Guide Version 7.1 309

C Administering webMethods SWIFT Module in a Cluster

SWIFTNet Client Environment Information
SWIFTNet Client SAG Connection Information
SWIFTNet Remote Process Connection Configuration

SWIFTNet Server Environment Information

SWIFTNet Server SAG Connection Properties

The configuration information is visible only to the server on which SWIFT Module
resides; it does not share a common storage facility. Therefore, when using SWIFT
Module in a clustered environment, you need to replicate the SWIFTNet Client SAG
Connection Information and SWIFTNet Server SAG Connection Properties information
in the SWIFTNet Client Configuration and SWIFTNet Server Configuration screens
across all the nodes in the cluster.

Trading Networks Configuration Information

The configuration information created to use SWIFT Module with Trading Networks
includes the following items:

B Document attributes and type definitions
B Processing rules
B Trading Partner Agreements

The following information is imported into the database from the Import BIC List, Import
IS List, Import SR List and Import BICPlusIBAN List screens:

B BIC List

B BICPlusIBAN List

B IBAN Structure (IS) List
B SEPA Routing (SR) List

When using SWIFT Module in a clustered environment, the Trading Networks-related
configuration information and the imported lists are in the database, which is common
for all the clustered nodes and should not be replicated.

Note: Ensure that the document attributes, document type definitions, processing rules,
Trading Partner Agreements, and imported list files are available in the Integration
Server where the configuration information is replicated.

Note: XMLv2 notification reconciliation: The notifications sent by SWIFT are
automatically reconciled to the original document, even if the document is sent from a
node other than the node receiving the notification. Because the data for reconciling the
document exists in the Trading Networks information in the database (JDBC pools) that
is shared in the cluster, notification data does not need to be replicated.

310 webMethods SWIFT Module Installation and User’s Guide Version 7.1

C Administering webMethods SWIFT Module in a Cluster

To replicate the configuration

1 Ensure that all clustered Integration Server nodes point to the same JDBC pools. For
information on how to define JDBC connection pools, see the webMethods
installation guide for your release. See “About this Guide” for specific document
titles.

2 Replicate all custom flow services and packages by using the copy and send
mechanism from the Integration Server Administrator or Designer. For information
about replicating packages, see the chapter on managing packages in the Integration
Server administration guide for your release. See “About this Guide” for specific
document titles.

3 Replicate the SWIFTNet Client SAG Connection Information and SWIFTNet Server
SAG Connection Properties configurations as specified on the SWIFTNet Client
Configuration screen and the SWIFTNet Server Configuration screen. For more

information about these screens, see Chapter 16, “Configuration Steps for InterAct
and FileAct Messaging Services over SAG MQHA”".

Clustering Implementation Considerations

There is no specific SWIFT Module-related implementation when using SWIFT Module
in a clustered environment, other than the transport considerations described in this
section.

Important! The SWIFTNet component of SWIFT Module 7.1 SP1 does not support
clustering when you use RAHA as the transport for the message exchange.

AFT Transport

When you use the AFT transport to send and receive SWIFT messages, you must set up
the AFT environment as described in “Using AFT to Communicate with SWIFT” on
page 116 across the nodes. You must specify AFT as the transport used for the particular
message exchange in the TPA. Because the Trading Networks information is available in
the database (pointing to the same JDBC pool across the nodes in the cluster), the
information does not need to be replicated.

CASmf Transport

When you use the CASmf transport to send and receive SWIFT messages, you must set
up the CASmf environment as described in “Using the CASmf Services to Communicate
with SWIFT” on page 112 across the nodes. You must specify CASmf as the transport
used for the particular message exchange in the TPA. Because the Trading Networks
information is available in the database (pointing to the same JDBC pool across the nodes
in the cluster), the information does not need to be replicated.

webMethods SWIFT Module Installation and User’s Guide Version 7.1 311

C Administering webMethods SWIFT Module in a Cluster

MQHA Transport

When you use the MQHA transport to send and receive SWIFT messages, you must
ensure that you:

1 Install the webMethods WebSphere MQ Adapter with the latest fix on all the nodes in
the cluster.

2 Replicate the packages containing the WebSphere MQ Adapter connections, listeners,
and listener notifications across all nodes in the cluster.

3 Enable the replicated WebSphere MQ Adapter connections, listeners, and listener
notifications across all nodes in the cluster.

You must set MQHA as the transport used for the particular message exchange in the
TPA. Because the Trading Networks information is available in the database (pointing to
the same JDBC pool across the nodes in the cluster), the information does not need to be
replicated.

Note: The Server and Client application contexts created as part of the SWIFTNet
component message exchange over the MQHA transport are stored in shared cache and
do not need to be replicated. For more information on how to initialize the client and
server application contexts, see “Step 3: Initialization and Request-Time Operations for
Your Client or Server Application” on page 172.

For more information about the MQHA setup, see “Using WebSphere MQ Adapter to
Communicate with SWIFT” on page 110.

312 webMethods SWIFT Module Installation and User’s Guide Version 7.1

D Examples of Data PDU Content of Documents

B Data PDU Content of Different Types of Notificationsot 314
B MT/MX Message Data PDU CONtentt 323

webMethods SWIFT Module Installation and User’s Guide Version 7.1 313

D Examples of Data PDU Content of Documents

Data PDU Content of Different Types of Notifications

The following are examples of the Data PDU content of different types of notifications
that SWIFT Alliance Access sends to webMethods SWIFT Module.

Data PDU Content of a Delivery Notification Example

The following is an example of the Data PDU content of a Delivery Notification.

<?xml version="1.0" encoding="UTF-8" ?>

<Saa:DataPDU xmins:Saa="urn:swift:saa:xs d:saa.2.0"
xmins:Sw="urn:swift:snl:ns.Sw"
xmins:Swint="urn:swift:snl:ns.Swint"xmins:SwGb1="urn:swift:snl:ns.SwGb1"
xmins:SwSec="urn:swift:snl:ns.SwSec">

<Saa:Revision>

2.0.1</Saa:Revision>

<Saa:Header>

<Saa:DeliveryNotification>

<Saa:ReconciliationInfo>
090624PTSAUSAOAXXX0077000422</Saa:ReconciliationInfo>

<Saa:ReceiverDeliveryStatus>
RcvDelivered</Saa:ReceiverDeliveryStatus>
<Saa:Messageldentifier>
fin.0l1</Saa:Messageldentifier>
<Saa:Receijver>

<Saa:BIC12>

PTSAUSAOAXXX</Saa:BIC12>

<Saa:FullName>

<Saa:X1>

PTSAUSAOXXX</Saa:X1>
</Saa:FullName>

</Saa:Receiver>
<Saa:Interfacelnfo>
<Saa:MessageCreator>
FINInterface</Saa:MessageCreator>
<Saa:MessageContext>
Original</Saa:MessageContext>
<Saa:MessageNature>

Network</Saa:MessageNature>
</Saa:Interfacelnfo>
<Saa:NetworkInfo>

<Saa:Priority>
System</Saa:Priority>
<Saa:IsPossibleDuplicate>
true</Saa:IsPossibleDuplicate>
<Saa:DuplicateHistory>
<Saa:PDM>

{PDM:1102090624PTSAUSAOAXXX0078000885}</Saa:PDM>
</Saa:DuplicateHistory>
<Saa:Service>

314 webMethods SWIFT Module Installation and User’s Guide Version 7.1

D Examples of Data PDU Content of Documents

swift.fin</Saa:Service>
<Saa:Network>
FIN</Saa:Network>
<Saa:SessionNr>
0079</Saa:SessionNr>
<Saa:SeqNr>

000888</Saa:SeqNr>

<Saa:FINNetworkInfo>

<Saa:MessageSyntaxVersion>

0805</Saa:MessageSyntaxVersion>
<Saa:CorrespondentInputReference>
090624DYDYXXXXHXXX0000836861</Saa:CorrespondentInputReference>

<Saa:CorrespondentInputTime>
20090624100200</Saa:CorrespondentInputTime>
<Saa:LocalOQutputTime>
20090624111400</Saa:LocalQutputTime>
<Saa:SystemOriginated>
{SYS:}</Saa:SystemOriginated>
</Saa:FINNetworkInfo>
</Saa:NetworkInfo>
<Saa:SecurityInfo>
<Saa:FINSecurityInfo>
<Saa:ChecksumResult>

Success</Saa:ChecksumResult>
<Saa:ChecksumValue>
A5D4C6F14E1E</Saa:ChecksumValue>
</Saa:FINSecuritylInfo>
</Saa:SecurityInfo>

</Saa:DeliveryNotification>
</Saa:Header>
<Saa:Body>

ezE3NToxMDQ5fXsxMDY6MDkwNjIOUFRTQVVTQTBBWFhYMDA3NZAWMDQyMn17MTA40k1UOTEWNTg2Mz14

fXsxNzU6GMTA10X17MTA30jASMDYyNFBUUOFVUOEWQVhYWDAWNZgwMDA40DJ9</Saa:Body>
</Saa:DataPDU>

Data PDU Content of a Delivery Report Example

The following is an example of the Data PDU content of a Delivery Report.

<?xml version="1.0" encoding="UTF-8" ?>
<Saa:DataPDU xmlns:Saa="urn:swift:saa:xs d:saa.2.0"
xmins:Sw="urn:swift:snl:ns.Sw"
xmins:Swint="urn:swift:snl:ns.Swint"xmins:SwGb1="urn:swift:snl:ns.SwGb1"
xmins:SwSec="urn:swift:snl:ns.SwSec">

<Saa:Header>

<Saa:DeliveryReport>

<Saa:SenderReference>
MT210244895</Saa:SenderReference>
<Saa:ReceiverDeliveryStatus>
RcvDelivered</Saa:ReceiverDeliveryStatus>

webMethods SWIFT Module Installation and User’s Guide Version 7.1

315

D Examples of Data PDU Content of Documents

<Saa:0riginallnstanceAddressee>

<Saa:X1>

PTSAUSAOXXX</Saa:X1>
</Saa:0riginallnstanceAddressee>
<Saa:ReportingApplication>
TrafficReconciliation</Saa:ReportingApplication>
<Saa:NetworkInfo>

<Saa:Priority>

Normal</Saa:Priority>
<Saa:IsPossibleDuplicate>
false</Saa:IsPossibleDuplicate>
<Saa:IsNotificationRequested>
true</Saa:IsNotificationRequested>
<Saa:Service>
swift.fin</Saa:Service>
<Saa:Network>

FIN</Saa:Network>
<Saa:SessionNr>
0077</Saa:SessionNr>
<Saa:SeqNr>
000419</Saa:SegNr>

<Saa:FINNetworkInfo>
<Saa:MessageSyntaxVersion>
0805</Saa:MessageSyntaxVersion>
</Saa:FINNetworkInfo>
</Saa:NetworkInfo>

<Saa:Interventions>

<Saa:Intervention>

<Saa:IntvCategory>
DeliveryReport</Saa:IntvCategory>
<Saa:CreationTime>
20090624055941</Saa:CreationTime>
<Saa:0peratorOrigin>
SYSTEM</Saa:0peratorOrigin>
<Saa:Contents>
{175:1049}{106:090624PTSAUSAQAXXX0077000419}{108:MT210244895}{175:1049}{107:0906
24PTSAUSAQAXXX0077000872}</Saa:Contents>
</Saa:Intervention>

</Saa:Interventions>
<Saa:IsRelatedInstanceOriginal>

true</Saa:IsRelatedInstanceOriginal>
<Saa:MessageCreator>
ApplicationInterface</Saa:MessageCreator>
<Saa:IsMessageModified>
false</Saa:IsMessageModified>
<Saa:MessageFields>

HeaderAndBody</Saa:MessageFields>
<Saa:Message>
<Saa:SenderReference>
MT210244895</Saa:SenderReference>
<Saa:Messageldentifier>

316 webMethods SWIFT Module Installation and User’s Guide Version 7.1

D Examples of Data PDU Content of Documents

fin.210</Saa:Messageldentifier>
<Saa:Format>

MT</Saa:Format>
<Saa:SubFormat>
Input</Saa:SubFormat>
<Saa:Sender>

<Saa:BIC12>
PTSAUSAOAXXX</Saa:BIC12>
<Saa:FullName>

<Saa:X1>
PTSAUSAOXXX</Saa:X1>
</Saa:FullName>
</Saa:Sender>
<Saa:Receiver>
<Saa:BIC12>
PTSAUSAOXXXX</Saa:BIC12>

<Saa:FullName>

<Saa:X1>

PTSAUSAOXXX</Saa:X1>
</Saa:FullName>

</Saa:Receiver>
<Saa:Interfacelnfo>
<Saa:UserReference>
MT210244895</Saa:UserReference>
<Saa:MessageCreator>

ApplicationInterface</Saa:MessageCreator>
<Saa:MessageContext>
Report</Saa:MessageContext>
<Saa:MessageNature>
Financial</Saa:MessageNature>
</Saa:Interfacelnfo>

<Saa:NetworkInfo>

<Saa:Priority>

Normal</Saa:Priority>

<Saa:IsPossibleDuplicate>
false</Saa:IsPossibleDuplicate>
<Saa:IsNotificationRequested>
true</Saa:IsNotificationRequested>
<Saa:Service>
swift.fin</Saa:Service>
<Saa:Network>

FIN</Saa:Network>
<Saa:SessionNr>
0077</Saa:SessionNr>
<Saa:SeqgNr>

000419</Saa:SeqNr>
<Saa:FINNetworkInfo>
<Saa:MessageSyntaxVersion>
0805</Saa:MessageSyntaxVersion>
</Saa:FINNetworkInfo>
</Saa:NetworkInfo>

webMethods SWIFT Module Installation and User’s Guide Version 7.1

317

D Examples of Data PDU Content of Documents

<Saa:Securitylnfo>
<Saa:FINSecurityInfo>
<Saa:ChecksumResult>
Success</Saa:ChecksumResult>
<Saa:ChecksumValue>
6FAACBD3AAO4</Saa:ChecksumValue>
<Saa:MACResult>
Success</Saa:MACResult>
<Saa:MACValue>

00000000</Saa:MACValue>

<Saa:MACSignatureValue>

<SwSec:Signature>

<SwSec:SignedInfo>

<Sw:Reference>

<Sw:DigestValue>
3KgCRof2Z2mgp47iXXIrxAuzFE/thjoETNXUUFtv7PG4o=</Sw:DigestValue>

</Sw:Reference>

</SwSec:SignedInfo>

<SwSec:SignatureValue>

PEMF@Proc-Type: 4,MIC-ONLY

Content-Domain: RFC822

EntrustFile-Version: 2.0

Originator-DN: cn=finuser,o=ptsausaa,o=swift

Orig-SN: 1238170352

MIC-Info: SHA256, RSA,
nxNjzFQJdeeMuk4vcXqdqi9/ZGcHO1yZ94N4jzCKQTTWZYF5sWqf5b8w88KSKw5Vrt52ABEVRE/79LC
ASarCcFZQcv4GOrf9BRubAjdnUgVnxdbPhJtR+Pfj+TP5Twa8eS82vwbNFKIT7787mrnalQNUih2rA
Lz3GmA7bcdbN712hs2eA35010KQaRg/8a+9h19vd7meelLQVTSQBrLC41HMp+4Gb8kiyaafONXMNB20
kGY7bZdalPTmObPYyvrvKRMIxXus6wn2d++hWP3d4CJ3/26FRkWRgK6EqKissgyAI6A0XSNmgdnzdWy
5jwnx/ry2kcYHiLBCyJd7gWaZHPZhyg==

</SwSec:SignatureValue>

<SwSec:KeyInfo>

<SwSec:SignDN>

cn=finuser,o=ptsausaa,o=swift</SwSec:SignDN>

<SwSec:CertPolicyld>

</SwSec:CertPolicyld>

</SwSec:KeyInfo>

<SwSec:Manifest>

<Sw:Reference>

<Sw:DigestRef>

M</Sw:DigestRef>

<Sw:DigestValue>

M7WI3V0o173HohEQ5SVRA3RS1V+0QapQF fK+DPLkg3m0=</Sw:DigestValue>
</Sw:Reference>

</SwSec:Manifest>

</SwSec:Signature>

</Saa:MACSignatureValue>

</Saa:FINSecurityInfo>

318 webMethods SWIFT Module Installation and User’s Guide Version 7.1

D Examples of Data PDU Content of Documents

</Saa:SecurityInfo>

</Saa:Message>

</Saa:DeliveryReport>

</Saa:Header>

<Saa:Body>

DQo6MjAEMDAOMZzKNC jozMDowMDAXMDMNC joyMToxMjMONTYvREVWDQo6MzJCOTVTRDEWNSWNC jo1IMEM6E
VENTRkZSUFA=</Saa:Body>

</Saa:DataPDU>

Data PDU Content of a History Report Example

The following is an example of the Data PDU content of a History Report.

<?xml version="1.0" encoding="UTF-8" 7>

<Saa:DataPDU xmlIns:Saa="urn:swift:saa:xsd:saa.2.0"xmIns:Sw="urn:swift:snl:ns.Sw"
xmins:S wint="urn:swift:snl:ns.Swint" xmins:SwGbT="urn:swift:snl:ns.SwGb1"
xmins:SwSec="urn:swift:snl:ns.SwSec">

<Saa:Revision>

2.0.1</Saa:Revision>

<Saa:Header>

<Saa:HistoryReport>

<Saa:SenderReference>

IPTSAUSAOXXX399TRNMSG1000$0906241473</Saa:SenderReference>

<Saa:0riginallnstanceAddressee>

<Saa:X1>

PTSAUSAOXXX</Saa:X1>
</Saa:0riginallnstanceAddressee>
<Saa:ReportingApplication>
ApplicationInterface</Saa:ReportingApplication>
<Saa:Interventions>

<Saa:Intervention>

<Saa:IntvCategory>

Routing</Saa:IntvCategory>

<Saa:CreationTime>

20090624065518</Saa:CreationTime>

<Saa:0peratorOrigin>

SYSTEM</Saa:0peratorOrigin>

<Saa:Text>

Routed from rp

[_AI_from_APPLI] to rp [_SI_to_SWIFT]; 1 instance(s) created at [FromSAAToMQ]
respectively;0On Processing by Function AI_from_APPLI with result
Success; (Rule:USER,200)</Saa:Text>

</Saa:Intervention>

</Saa:Interventions>
<Saa:IsRelatedInstanceOriginal>
true</Saa:IsRelatedInstanceOriginal>
<Saa:MessageCreator>
ApplicationInterface</Saa:MessageCreator>
<Saa:IsMessageModified>
false</Saa:IsMessageModified\

>

<Saa:MessageFields>

webMethods SWIFT Module Installation and User’s Guide Version 7.1 319

D Examples of Data PDU Content of Documents

HeaderAndBody</Saa:MessageFields>

<Saa:Message>

<Saa:SenderReference>
IPTSAUSAOXXX399TRNMSG1000$0906241473</Saa:SenderReference>
<Saa:Messageldentifier>

fin.399</Saa:Messageldentifier\
>

<Saa:Format>
MT</Saa:Format>
<Saa:SubFormat>
Input</Saa:SubFormat>
<Saa:Sender>

<Saa:BIC12>
PTSAUSAOAXXX</Saa:BIC12>
<Saa:FullName>

<Saa:X1>
PTSAUSAOXXX</Saa:X1>
</Saa:FullName>
</Saa:Sender>
<Saa:Receiver>

<Saa:BIC12>
PTSAUSAOXXXX</Saa:BIC12>
<Saa:FullName>

<Saa:X1>

PTSAUSAOXXX</Saa:X1>
</Saa:FullName>

</Saa:Receiver>

<Saa:Interfacelnfo>
<Saa:UserReference>
MT1990035656006</Saa:UserReference>
<Saa:MessageCreator\

>
ApplicationInterface</Saa:MessageCreator>
<Saa:MessageContext>
Report</Saa:MessageContext>
<Saa:MessageNature>
Financial</Saa:MessageNature>
</Saa:Interfacelnfo>
<Saa:NetworkInfo>

<Saa:Priority>

Urgent</Saa:Priority>
<Saa:IsPossibleDuplicate>
false</Saa:IsPossibleDuplicate>
<Saa:IsNotificationRequested>
true</Saa:IsNotificationRequested>
<Saa:Service>
swift.fin</Saa:Service>
<Saa:FINNetworkInfo>

<Saa:MessageSyntaxVersion>
0805</Saa:MessageSyntaxVersion>
</Saa:FINNetworkInfo>

320 webMethods SWIFT Module Installation and User’s Guide Version 7.1

D Examples of Data PDU Content of Documents

</Saa:NetworkInfo>
</Saa:Message>
</Saa:HistoryReport>
</Saa:Header>
<Saa:Body>

DQo6MjA6VFJIOIEITRZEWMDANCjo30TpCTEFESUSHUYBUTYBCRSBJUINVRUQGTKOUIEXBVEVSIFRIQU4=

</Saa:Body>
</Saa:DataPDU>

Data PDU Content of a Transmission Report Example

The following is an example of the Data PDU content of a Transmission Report.

<?xml version="1.0" encoding="UTF-8" ?>

<Saa:DataPDU xmlns:Saa="urn:swift:saa:xs d:saa.2.0"
xmins:Sw="urn:swift:snl:ns.Sw"

xmins:Swint="urn:swift:snl:ns.Swint" xmIns:SwGbT1="urn:swift:snl:ns.SwGb1"
xmins:SwSec="urn:swift:snl:ns.SwSec">

<Saa:Header>

<Saa:TransmissionReport>

<Saa:SenderReference>

TXXXXXXXXXXX05%$0906251484</Saa:SenderReference>
<Saa:NetworkDeliveryStatus>

NetworkAcked</Saa:NetworkDeliveryStatus>
<Saa:0riginallnstanceAddressee>

<Saa:X1>

XXXXXXXXXXX</Saa:X1>
</Saa:0riginallnstanceAddressee>
<Saa:ReportingApplication>
FINInterface</Saa:ReportingApplication>

<Saa:NetworkInfo>

<Saa:Priority>
System</Saa:Priority>
<Saa:IsPossibleDuplicate>
false</Saa:IsPossibleDuplicate>
<Saa:IsNotificationRequested>
false</Saa:IsNotificationRequested>
<Saa:Service>

swift.fin</Saa:Service>
<Saa:Network>
FIN</Saa:Network>
<Saa:SessionNr>
0084</Saa:SessionNr>
<Saa:SeqNr>
000429</Saa:SeqNr>

<Saa:FINNetworkInfo>
<Saa:MessageSyntaxVersion>
0805</Saa:MessageSyntaxVersion>

</Saa:FINNetworkInfo>
</Saa:NetworkInfo>

webMethods SWIFT Module Installation and User’s Guide Version 7.1

321

D Examples of Data PDU Content of Documents

<Saa:Interventions>
<Saa:Intervention>

<Saa:IntvCategory>
TransmissionReport</Saa:IntvCategory>
<Saa:CreationTime>
20090625040648</Saa:CreationTime>

<Saa:0peratorOrigin>
SYSTEM</Saa:0peratorOrigin>
<Saa:Contents>
{1:F25PTSAUSAQOAXXX0084000429}{4:{331:0084090625090809062509100000000010000000004
29000429000898000897}</Saa:Contents>
</Saa:Intervention>
</Saa:Interventions>
<Saa:IsRelatedInstanceOriginal>
true</Saa:IsRelatedInstanceOriginal>
<Saa:MessageCreator>
FINInterface</Saa:MessageCreator>
<Saa:IsMessageModified>
false</Saa:IsMessageModified>

<Saa:MessageFields>
HeaderAndBody</Saa:MessageFields>

<Saa:Message>

<Saa:SenderReference>
IXXXXXXXXXXX05$0906251484</Saa:SenderReference>
<Saa:Messageldentifier>
fin.05</Saa:Messageldentifier>

<Saa:Format>

MT</Saa:Format>
<Saa:SubFormat>
Input</Saa:SubFormat>
<Saa:Sender>
<Saa:BIC12>
PTSAUSAOAXXX</Saa:BIC12>
<Saa:FullName>
<Saa:X1>
PTSAUSAOXXX</Saa:X1>
</Saa:FullName>
</Saa:Sender>
<Saa:Receiver>
<Saa:BIC12>

XXXXXXXXXXX</Saa:X1>
<Saa:FullName>

<Saa:X1>

</Saa:FullName>

</Saa:Receiver>
<Saa:Interfacelnfo>
<Saa:MessageCreator>
FINInterface</Saa:MessageCreator>
<Saa:MessageContext>

Report</Saa:MessageContext>
<Saa:MessageNature>
Service</Saa:MessageNature>

322 webMethods SWIFT Module Installation and User’s Guide Version 7.1

D Examples of Data PDU Content of Documents

</Saa:Interfacelnfo>
<Saa:NetworkInfo>
<Saa:Priority>
System</Saa:Priority>
<Saa:IsPossibleDuplicate>

false</Saa:IsPossibleDuplicate>

<Saa:IsNotificationRequested>
false</Saa:IsNotificationRequested>
<Saa:Service>
swift.fin</Saa:Service>
<Saa:Network>

FIN</Saa:Network>

<Saa:SessionNr>
0084</Saa:SessionNr>

<Saa:SeqgNr>

000429</Saa:SeqNr>
<Saa:FINNetworkInfo>
<Saa:MessageSyntaxVersion>
0805</Saa:MessageSyntaxVersion>
</Saa:FINNetworkInfo>
</Saa:NetworkInfo>
</Saa:Message>
</Saa:TransmissionReport>
</Saa:Header>

</Saa:DataPDU>

MT/MX Message Data PDU Content

The following are examples of the Data PDU content of the MT and MX messages that
webMethods SWIFT Module exchanges with the SWIFT Network over SWIFT Alliance

Access

MT Message Data PDU Content Example

The following is an example of the Data PDU content of a fin.535 (MT message type)

message.

<?xml version="1.0"7?>
<ns:DataPDU
xmins:ns="urn:swift:saa:xsd:saa.2.0">
<ns:Header>
<ns:Message>

<ns:SenderReference>MT535946242</ns:SenderReference>
<ns:Messageldentifier>fin.535</ns:Messageldentifier>

<ns:Format>MT</ns:Format>
<ns:Sender>
<ns:BIC12>PTSAUSAOAXXX</ns:BIC12>

webMethods SWIFT Module Installation and User’s Guide Version 7.1

323

D Examples of Data PDU Content of Documents

<ns:FullName>
<ns:X1I>PTSAUSAOXXX</ns:X1>
</ns:FullName>
</ns:Sender>
<ns:Receiver>
<ns:BIC12>PTSAUSAOXXXX</ns:BIC12>
<ns:FullName>
<ns:X1I>PTSAUSAOXXX</ns:X1>
</ns:FullName>
</ns:Receiver>
<ns:Interfacelnfo>
<ns:UserReference>MT535946242</ns:UserReference>
</ns:Interfacelnfo>
<ns:NetworkInfo>
<ns:IsNotificationRequested>true</ns:IsNotificationRequested>
</ns:NetworkInfo>
</ns:Message>
</ns:Header>

<ns:Body>
DQo6MTZSOkdFTkwNCjoyOEUBMTIzZNDUvTO5MWQOKOjEZQTo6UIRBYVC8vQTJIDDQ06MjBDOJpTRULIFLY 8w
MTM40A0KO0jIzRzpORVANLONPRFUNCjo50EE601BSRVAVLZES0TkxMjMxDQo60ThBOjpTVEFULY8X0Tk5
MTIzMQOKOjIyRjo6UOZSRS9BMKMORTZHOCI9BREN
PDQo6MjJGOJpDTORFLOEYQzZRFNkc4LONPTVANCjoyMkY60TNUVFkvQTIDNEUZ2RZzgvQUNDVAOKOjIyRjo
6UIRCQS9BMKMORTZHOCICTO9LDQo6MTZSOkxJTksNCjoxMOE6OkxJITksvLzUwMwOKOjIwQzo6UkVYMQS8
veAOKOjE2UzpMSUS5LDQo6MTZSO0kxJTksNCjoxMO
E60kxJTksvLzUwMwOKOjIwQzo6UFJFVi8veAOKOjE2UzpMSU5LDQo60TdBOjpTQUZFLY94DQo6MTACO]
pBQI1RJILY97DQo6MTdCOjpBVURULY9ZDQo6MTACOjpDTO5TLY97ZDQ06MTZTOKdFTkwNCjoxNTI6U1VCUO
FGRQOKOjk1Ujo6QUNPVy9BLZzEyMzQNCjo5NOEGD
TNBRkUvLzM1eAOKOJE3Qjob6QUNUSS8VWQOKOJE2UjpGSUANCjozNUI6SVNJITiBBMKMORTZHOEKkwSZINC
JoyMkg60kNBT1AvLONBUOGNCjob5MEE60k1ISS1QvLORJUOMVYMSWZNDU2NZzg5MDEYMZzQ1DQo60TRCOjpQU
k1DLy9MTUFSLOFCQOQNCJjo50EE60TBSSUMVLZEDL
0TkxMjMxDQo60OTNCOjpBROASLOEYQzRFNkc4LOEyQzQvTjESMzQINjc40TAXMjMONQOKOGE2UjpTVUJIC
QUWNCJjo5MOM601BFTKQVLOFNT1IvQVZBSS90MSwzNDU2Nzg5MDEYyMzQ1DQo60TRCOjpTQUZFLOEYQZRF
Nkc4LOEyQzQveAOKOjcwQzobU1VCQi8veAOKOJE
2UzpTVUJCQUWNCJjo50UE60kRBQUMVLO4XxMJMNCjoxOUE6OKhPTEQVLO5VUOQXxLDMODQo6MT1BOjpCTO9
LLY90VVNEMSwzNAOKOJE5QTo6QUNSVS8vTIVTRDESMzQNCjo5MkI60kYYQOgvLIVTRCOFVVIvMSwzNDU
2Nzg5MDEyMzQ1DQo6NzBFOJpITOXELY94DQo6MT
ZTOkZJTg0KOjE2UzpTVUJITQUZFDQo6MTZSOKFERETORK8BNCjo5NVI60Kk1FT1IIVvQTIDNEUZRZgveAOKO]
k1Ujo6TUVSRS9BMKMORTZHOC94DQo6MTTBOjpITOXQLY9OVVNEMSWwZNAOKOJESQTo6SEIMUY8VTIVTRD
EsMzQNCjoxNTM6QURESUSGTw==</ns:Body>

</ns:DataPDU>

MX Message Data PDU Content Example

The following is an example of the different content parts of the Data PDU of a
camt.029.001.01 (MX message type) message.

xmldata (Data PDU)

<?xml version="1.0"7>
<ns:DataPDU
xmins:ns="urn:swift:saa:xsd:saa.2.0">
<ns:Header>

324 webMethods SWIFT Module Installation and User’s Guide Version 7.1

D Examples of Data PDU Content of Documents

<ns:Message>
<ns:SenderReference>MXWebM522237</ns:SenderReference>
<ns:Messageldentifier>camt.029.001.01</ns:Messageldentifier>
<ns:Format>AnyXML</ns:Format>
<ns:SubFormat>Input</ns:SubFormat>
<ns:Sender>
<ns:DN>o=ptsausaa,o=swift</ns:DN>
<ns:FullName>
<ns:X1I>PTSAUSAAXXX</ns:X1>
</ns:FullName>
</ns:Sender>
<ns:Receiver>
<ns:DN>o=ptsausaa,o=swift</ns:DN>
<ns:FullName>
<ns:XI>PTSAUSAAXXX</ns:X1>
</ns:FullName>
</ns:Receiver>
<ns:Interfacelnfo>
<ns:UserReference>MXWebM522237</ns:UserReference>
</ns:Interfacelnfo>
<ns:NetworkInfo>
<ns:IsNotificationRequested>true</ns:IsNotificationRequested>
<ns:Service>swift.generic.ialx</ns:Service>
</ns:NetworkInfo>
</ns:Message>
</ns:Header>
<ns:Body>
<ns:AppHdr
xmins:ns="urn:swift:xsd:%$ahVvV10">
<ns:MsgRef>REF10610311505</ns:MsgRef>
<ns:CrDate>2006-10-31T03:05:41.502</ns:CrDate>
</ns:AppHdr>
<ns:Document
xmins:ns="urn:swift:xsd:swift.eni$camt.029.001.01">
<ns:camt.029.001.01>
<ns:Assgnmt>
<ns:Id>RCUSTA20050001</ns:Id>
<ns:Assgnr>AAAAGBZ2L</ns:Assgnr>
<ns:Assgne>CUSAGB2L</ns:Assgne>
<ns:CreDtTm>2005-01-27T11:04:27</ns:CreDtTm>
</ns:Assgnmt>
<ns:RslvdCase>
<ns:I1d>CCCC-MOD-20050127-0003</ns:I1d>
<ns:Cretr>CUSAGB2L</ns:Cretr>
</ns:RslvdCase>
<ns:Sts>
<ns:Conf>MODI</ns:Conf>
</ns:Sts>
</ns:camt.029.001.01>
</ns:Document></ns:Body>
</ns:DataPDU>

webMethods SWIFT Module Installation and User’s Guide Version 7.1 325

D Examples of Data PDU Content of Documents

MX Header

<ns:AppHdr
xmins:ns="urn:swift:xsd:$ahV10">
<ns:MsgRef>REF10610311505</ns:MsgRef>
<ns:CrDate>2006-10-31T03:05:41.502</ns:CrDate>

</ns:AppHdr>

MX Document

<ns:Document
xmins:ns="urn:swift:xsd:swift.eni$camt.029.001.01">
<ns:camt.029.001.01>
<ns:Assgnmt>
<ns:Id>RCUSTA20050001</ns:Id>
<ns:Assgnr>AAAAGBZ2L</ns:Assgnr>
<ns:Assgne>CUSAGBZ2L</ns:Assgne>
<ns:CreDtTm>2005-01-27T11:04:27</ns:CreDtTm>
</ns:Assgnmt>
<ns:RslvdCase>
<ns:I1d>CCCC-MOD-20050127-0003</ns:Id>
<ns:Cretr>CUSAGB2L</ns:Cretr>
</ns:RslvdCase>
<ns:Sts>
<ns:Conf>M0ODI</ns:Conf>
</ns:Sts>
</ns:camt.029.001.01>
</ns:Document>

326 webMethods SWIFT Module Installation and User’s Guide Version 7.1

	Title Page
	Copyright
	Table of Contents
	About this Guide
	Document Titles
	Document Conventions
	Documentation Installation
	Online Information

	I Getting Started
	1 Concepts
	What Is the SWIFT Network?
	What Is SWIFTNet?
	What Is SWIFTNet Link?
	SNL Messaging Services
	SWIFTNet InterAct
	SWIFTNet FileAct
	SWIFTNet FIN
	SWIFTNet Browse

	What Is webMethods SWIFT Module?
	webMethods SWIFT Module Packages

	SWIFT FIN Component
	What Is a SWIFT FIN Message?
	About SWIFT Message Format

	What Is a SWIFT MX Message?
	SWIFT FIN Component Parts
	SWIFT FIN Component Architecture
	SWIFT FIN Component Features

	SWIFTNet Component
	Client Functionality
	Server Functionality
	SNL Request and Response Primitives Support
	SWIFTNet Component Architecture
	SWIFTNet Component Real-Time Mode
	Real-Time InterAct
	Real-Time FileAct

	SWIFTNet Component Store-and-Forward Mode
	Store and Forward InterAct
	Store and Forward FileAct
	Retrieving Messages and Files from a Queue
	Pull Mode
	Push Mode

	Fetching a File from a Queue

	Server Application Processing of SNL Primitives
	SWIFT File Transfer Adapter Support

	FpML Message Exchange Support

	2 Installing webMethods SWIFT Module
	Overview
	Requirements
	Installing webMethods SWIFT Module 7.1 SP1
	Installing the SWIFT Module Samples Package
	Upgrading to SWIFT Module 7.1 SP1
	Before You Begin
	Upgrading from SWIFT Module 7.1
	Upgrading from SWIFT FIN Module 6.1 Service Pack 4
	Upgrading from SWIFTNet Module 6.0.1 Service Pack 1

	Uninstalling SWIFT Module 7.1 SP1

	II Configuring SWIFT Module for Message Exchange Over SAA
	3 Configuration Steps for Message Exchange over SAA
	Overview
	Step 1: Import BICPlusIBAN List
	Step 2: Define Trading Partner Profiles
	Step 3: Create Validation Rules
	Step 4: Write Inbound and Outbound Mapping Services
	Step 5: Modify Trading Partner Agreements
	Step 6: Manage SWIFT Message Processing Rules and Message Execution
	Step 7: Configure SWIFT Interfaces
	Step 8: Configure Notification Processing
	Step 9: Configure MT/MX Message Exchange Over SAA

	4 Importing BICPlusIBAN and SEPA Routing Directories
	Overview
	Using the Search BIC Information Tool

	Importing Lists
	Creating an Empty Database Table
	Importing a List

	Business Examples of Using the BICPlusIBAN Directory
	Business Examples of Using the SEPA Routing Directory
	Searching BIC Information

	5 Defining Trading Networks Information
	Overview
	About Message Records
	Creating Message Records

	About Trading Partner Profiles
	Why Are Trading Partner Profiles Important?
	Defining Trading Networks Profiles

	About TN Document Types for SWIFT Messages

	6 Creating Validation Rules
	Creating Validation Rules
	Creating Network Validation Rules
	Creating Usage Validation Rules

	7 Creating Inbound and Outbound Mapping Services
	What Is Message “Mapping?”
	Why Create an Outbound Mapping Service?
	Why Create an Inbound Mapping Service?
	Example of Mapping a Message

	Creating an Outbound Mapping Service
	Inputs and Outputs
	Flow Operations to Use

	Creating an Inbound Mapping Service
	Parsing to the Subfield Level
	Reusing Mapping Services

	8 Customizing Trading Partner Agreements
	Overview
	How Does SWIFT Module Identify a TPA?
	Modifying the TPA

	9 Configuring Processing Rules to Send and Receive SWIFT FIN Messages
	Overview
	Sending Messages to SWIFT
	Preliminary Steps for Sending Messages
	Assigning the Processing Rule
	Step 1: Define the Processing Rule Criteria
	Step 2: Define the Processing Action
	Step 3: Create a Service to Map to the DFD Format
	Step 4: Submit the Document to Trading Networks

	Receiving Messages from SWIFT
	Preliminary Steps for Receiving Messages
	Defining the Processing Rule
	Inbound Message Processing

	10 Using SWIFT Module SDK Services
	What Is the SWIFT SDK
	About the SWIFT Module SDK Features
	SWIFT Module SDK Document Formats
	SWIFT Module SDK Folder Organization

	11 Configuring SWIFT Interfaces
	Overview
	Using WebSphere MQ Adapter to Communicate with SWIFT
	Configuring the WebSphere MQ Adapter

	Using the CASmf Services to Communicate with SWIFT
	webMethods CASmf Services
	Configuring the CASmf Interface

	Using AFT to Communicate with SWIFT
	Configuring AFT for Inbound Messages
	Configuring AFT for Outbound Messages

	12 Configuring Notifications for Messages in XML v2 Format
	Overview
	Configuring SWIFT Module to Handle Notifications
	Step 1: Import Trading Networks Information for Notifications
	Step 2: Configure SWIFT Module to Handle Notifications
	Step 3: View Notifications and Related Messages
	Notification Details Displayed in the Transaction Details Panel

	13 Using SAA to Exchange XML v2 Wrapped MT and MX Messages
	Overview
	Exchanging MT Messages in XMLv2 Format
	Step 1: Configure Trading Partners for Message Exchange
	Step 2: Create Trading Networks Items
	Viewing Trading Networks Assets for an MT Message
	About TN Document Types
	About Processing Rules
	About Trading Partner Agreements

	Step 3: Send the MT Message to SAA
	Step 4: Reconcile the Notification from SWIFT with the Original MT Message

	Exchanging MX Messages through SAA
	Step 1: Configure Trading Partners for Message Exchange
	Step 2: Create Trading Networks Assets
	Viewing or Modifying Trading Networks Assets for an MX Message

	Step 3: Create IS Schema and IS Document Type
	Step 4: Send the MX Message to SAA
	Step 5: Receive an MX Document from SAA

	Validating MX Messages Conform to SWIFT Standards
	Schema Validation of MX Messages
	Extended Validation of MX Messages

	14 Working with Market Practices
	Overview
	Creating Market Practices
	Creating Market Practice Rules

	III Configuring SWIFT Module for FileAct and InterAct Message Exchange Over SAG
	15 Configuration Steps for InterAct and FileAct Messaging Services over SAG RAHA
	Overview
	Step 1: Prepare the Server to Handle Requests
	Configuring SWIFT Alliance Gateway
	Configuring the SWIFTNet Component
	Configuring Trading Networks Information

	Step 2: Prepare the Client to Handle Requests
	Step 3: Invoke the Remote File Handler

	16 Configuration Steps for InterAct and FileAct Messaging Services over SAG MQHA
	Overview
	Step 1: Prepare the Server to Handle Requests
	Configuring SWIFT Alliance Gateway
	Configuring the SWIFTNet Component
	Configuring Trading Networks Information

	Step 2: Prepare the Client to Handle Requests
	Step 3: Initialization and Request-Time Operations for Your Client or Server Application
	Initializing the Client or Server Application
	Request-Time Operations
	Client Application
	Server Application

	Termination

	17 Using FTA to Transfer Files over SWIFTNet
	Overview
	Placing a Data File in the SAG Output Directory
	Creating a Companion File
	Companion Parameter File Data Structure

	Generating Data File Processing Status Reports
	Report File Data Structure

	A Services
	WmFIN Package
	wm.casmf.init Folder
	wm.casmf.init:shutdown
	wm.casmf.init:startup
	wm.casmf.trp Folder
	wm.casmf.trp:casmfSendReceiveSchedule
	wm.casmf.trp:processOutboundMessage
	wm.casmf.trp:sendAndReceive
	wm.casmf.trp:CASmfOutboundTrigger
	wm.casmf.util Folder
	wm.casmf.util:getOutboundMessageFolder
	wm.fin.bic Folder
	wm.fin.bic:deriveBICfromIBAN
	wm.fin.bic:generateIBAN
	wm.fin.bic:getBICInfo
	wm.fin.bic:getBICPlusInfo
	wm.fin.bic:insertIBANList
	wm.fin.bic:insertISList
	wm.fin.bic:insertSRList
	wm.fin.bic:validateBankID
	wm.fin.bic:validateBICCode
	wm.fin.bic:validateBICIBAN
	wm.fin.bic:BICInfo
	wm.fin.dev Folder
	wm.fin.dev:importFINItems
	wm.fin.dfd Folder
	wm.fin.dfd:convertBizNameFormat
	wm.fin.dfd:convertTagFormat
	wm.fin.dfd:getDFDList
	wm.fin.dfd:loadDFD
	wm.fin.dfd:unloadDFD
	wm.fin.dfd:unloadDFDs
	wm.fin.doc Folder
	wm.fin.doc:FINIData_Input
	wm.fin.doc:FINIData_Output
	wm.fin.doc:FINInboundMessage
	wm.fin.doc:FINOutboundMessage
	wm.fin.doc:MessageHeader
	wm.fin.doc:UserParameters
	wm.fin.doc.catF:MTF21
	wm.fin.doc.header Folder
	wm.fin.doc.trailer Folder

	wm.fin.doc.trailer:Trailer
	wm.fin.format Folder
	wm.fin.format:conformFINIData
	wm.fin.format:conformIData
	wm.fin.format:convertFINBlock4ToISDoc
	wm.fin.format:convertFINToIData
	wm.fin.format:convertIDataToFIN
	wm.fin.format:convertISMTDocToFINFormat
	wm.fin.format:flushTemplateCache
	wm.fin.format:xmlToIData
	wm.fin.init Folder
	wm.fin.init:startup
	wm.fin.init:shutdown
	wm.fin.map Folder
	wm.fin.map:mapApplicationBlockHeader
	wm.fin.map:mapApplicationHeader
	wm.fin.map:mapBasicBlockHeader
	wm.fin.map:mapBasicHeader
	wm.fin.map:mapOutbound
	wm.fin.map:mapOutboundMessage
	wm.fin.map:mapTrailer
	wm.fin.map:mapUACK
	wm.fin.map:mapUserBlockHeader
	wm.fin.map:mapUserHeader
	wm.fin.marketPractice Folder
	wm.fin.rules Folder
	wm.fin.rules:checkCodeOrder
	wm.fin.rules:contains
	wm.fin.rules:getDuplicateCodeList
	wm.fin.rules:setErrorDocument
	wm.fin.sepa Folder
	wm.fin.sepa:checkOperationalReadiness
	wm.fin.sepa:getAvailablePaymentChannels
	wm.fin.sepa:getOtherPaymentChannel
	wm.fin.sepa:getPreferredPaymentChannel
	wm.fin.sepa:validateAdherenceStatus
	wm.fin.transport Folder
	wm.fin.transport.AFT Folder

	wm.fin.transport.AFT:AFTOutboundTrigger
	wm.fin.transport.AFT:generateUniqueFileName
	wm.fin.transport.AFT:processInboundFile
	wm.fin.transport.AFT:processIncomingFile
	wm.fin.transport.AFT:processIncomingMessage
	wm.fin.transport.AFT:processOutboundFile
	wm.fin.transport.AFT:processOutgoingFile
	wm.fin.transport.MQSeries

	wm.fin.transport.MQSeries:getListenerService
	wm.fin.transport.MQSeries:getMQSeriesListenerService
	wm.fin.transport.MQSeries:MQSeriesPutTrigger
	wm.fin.transport.MQSeries:put
	wm.fin.transport.MQSeries:putMessage
	wm.fin.transport.property

	wm.fin.transport.property:getProperty
	wm.fin.transport.property:listProperties
	wm.fin.transport.Test
	wm.fin.transport.Test:FINSampleInboundMessage
	wm.fin.transport.Test:FINSampleInboundMessageTrigger
	wm.fin.transport.Test:FINSampleOutboundMessageTrigger
	wm.fin.transport.Test:processFinMsg
	wm.fin.trp Folder

	wm.fin.trp:FINInboundMessageTrigger
	wm.fin.trp:receive
	wm.fin.trp:receiveMessage
	wm.fin.trp:send
	wm.fin.trp:sendMessage
	wm.fin.utils Folder

	wm.fin.utils:generateUniqueIdentifier
	wm.fin.utils:getFINMessageAndIDs
	wm.fin.validation Folder

	wm.fin.validation:getErrorMessage
	wm.fin.validation:validateFinMsg
	wm.fin.validation:validateIData
	wm.fin.validation:validateIDataUtil
	wm.sdk.fin Folder

	wm.sdk.rec.mtxsd.Vyear
	wm.sdk.docgenerator:createMTISDocFromSchema
	wm.sdk.docgenerator:createMXISDocFromSchema
	wm.sdk.fin.converter:convertMTBlock4ToMTXML
	wm.sdk.fin.converter:convertMTFlatFileToMTXML
	wm.sdk.fin.converter:convertMTXMLblock4ToMTFlatFile
	wm.sdk.fin.converter:convertMTXMLToMTFlatFile
	wm.sdk.fin.validator:validateMTXML
	Supported SDK MX Message Types
	SDK Error Descriptions
	wm.unifi Folder

	wm.unifi.convertXMLtoIData
	wm.unifi.tranportSAA
	wm.unifi.utils.validateRules
	wm.unifi.validation Folder

	wm.unifi.validation:validateBEI
	wm.unifi.validation:validateBIC
	wm.unifi.validation:validateCountryCode
	wm.unifi.validation:validateCurrencyCode
	wm.unifi.validation:validateIBAN
	wm.unifi.validation:validateMXMsg
	Process Information Section of the XMLv2 Parameters Document
	wm.xmlv2.dev Folder
	wm.xmlv2.dev:createSWIFTItems
	wm.xmlv2.doc Folder
	wm.xmlv2.doc:XMLV2Params
	wm.xmlv2.notifications Folder
	wm.xmlv2.notifications:handleDeliveryNotifications
	wm.xmlv2.process Folder
	wm.xmlv2.process:createSAADoc
	wm.xmlv2.process:getInboundMessageType
	wm.xmlv2.process:outbound
	wm.xmlv2.process:processInbound
	wm.xmlv2.process:reconcileInboundDocuments
	wm.xmlv2.transport Folder
	wm.xmlv2.transport:submitDataPDU
	wm.xmlv2.utils Folder
	wm.xmlv2.utils:encodeBlock4
	wm.xmlv2.utils:encodeFinMessage
	wm.xmlv2.utils:formatXMLV2
	wm.xmlv2.utils:getDataPDUsFromFile
	wm.xmlv2.utils:putInBatchFile
	WmSWIFTCommon Package
	com.wm.common.CacheHandler Folder
	com.wm.common.CacheHandler.getContextForMessagePart ner
	com.wm.common.CacheHandler.saveContextForMessagePar tner
	com.wm.common.docs Folder
	com.wm.common.Init Folder
	com.wm.common.services Folder
	com.wm.common.services.createTNDocForMQResponse
	com.wm.common.services.getEnvAndXMLReqFromMQResp onse
	com.wm.common.services.getSagEnv
	com.wm.common.services.getSagReqEnvAsString
	com.wm.common.services.getXMLData
	com.wm.common.services.handleContextResponse
	com.wm.common.services.submitContextResponse
	com.wm.common.services.submitMQResponseToTN
	com.wm.common.services.submitRequestToTN
	com.wm.common.Util Folder

	com.wm.common.Util.createSagReqEnv
	com.wm.common.Util.invokeMQService
	com.wm.common.Util:migrateServices
	com.wm.common.Util.resolveNameSpaceAndEntity
	wm.swift.doc Folder
	WmEstdCommonLib Package
	WmSWIFTNetClient Package
	wm.swiftnet.client.doc Folder
	wm.swiftnet.client.init Folder
	wm.swiftnet.client.init:printRemoteErrors
	wm.swiftnet.client.init:shutdown
	wm.swiftnet.client.init:startup
	wm.swiftnet.client.mq Folder
	wm.swiftnet.client.mq:processRequest
	wm.swiftnet.client.mq:sendToMQ
	wm.swiftnet.client.property Folder
	wm.swiftnet.client.property:getProperty
	wm.swiftnet.client.services Folder
	wm.swiftnet.client.services:createContextRequest
	wm.swiftnet.client.services:destroyContextRequest
	wm.swiftnet.client.services:exchangeFileRequest
	wm.swiftnet.client.services:exchangeRequest
	wm.swiftnet.client.services:exchangeSnFRequest
	wm.swiftnet.client.services:fetchFileRequest
	wm.swiftnet.client.services:getFileStatusRequest
	wm.swiftnet.client.services:initRequest
	wm.swiftnet.client.services:pullSnFRequest
	wm.swiftnet.client.services:sendRequest
	wm.swiftnet.client.services:sendSynchronousRequest
	wm.swiftnet.client.services:signEncryptRequest
	wm.swiftnet.client.services:swArguments
	wm.swiftnet.client.services:swCall
	wm.swiftnet.client.services:termRequest
	wm.swiftnet.client.services:verifyDecryptRequest
	wm.swiftnet.client.services:waitRequest
	wm.swiftnet.client.transport Folder

	wm.swiftnet.client.transport.FTA:generateCompanionFile
	wm.swiftnet.client.transport.FTA:scanForReports
	wm.swiftnet.client.transport.FTA:submitToTN
	wm.swiftnet.client.util Folder

	wm.swiftnet.client.util:formatXML
	WmSWIFTNetServer Package
	wm.swiftnet.server.doc Folder
	wm.swiftnet.server.init Folder
	wm.swiftnet.server.init:printRemoteErrors
	wm.swiftnet.server.init:shutdown
	wm.swiftnet.server.init:startup
	wm.swiftnet.server.mq Folder
	wm.swiftnet.server.mq.inbound.getInfoFromNotificationDoc
	wm.swiftnet.server.mq.inbound.handleSWIFTRequest
	wm.swiftnet.server.mq.trp.respond
	wm.swiftnet.server.mq.util.sendToMQ
	wm.swiftnet.server.property Folder
	wm.swiftnet.server.property:getCommonProperties
	wm.swiftnet.server.property:getProperty
	wm.swiftnet.server.property:listProperties
	wm.swiftnet.server.property:reloadProperties
	wm.swiftnet.server.property:setProperty
	wm.swiftnet.server.services Folder
	wm.swiftnet.server.services:handleRequest
	wm.swiftnet.server.services:swCall
	wm.swiftnet.server.util Folder
	wm.swiftnet.server.util:formatXML
	SWIFTNet Server and Client Errors
	Services and the SNL Request and Response Primitives

	B XML Parsing Templates for SWIFT FIN Messages
	Overview
	SWIFT Message Data
	Sample SWIFT Message Definition

	Parsing Template Structure
	Sample Parsing Template
	Block Syntax of a Parsing Template
	Line Attribute Syntax of a Parsing Template
	Hint Processing

	Miscellaneous Notes

	C Administering webMethods SWIFT Module in a Cluster
	What Is webMethods Integration Server Clustering?
	SWIFT Module in a Clustered Environment
	Clustering Requirements for Each Integration Server in a Cluster
	Clustering Requirements When Installing SWIFT Module Packages
	Configuring SWIFT Module in a Clustered Environment
	Replicating Packages and Configuration Information to Integration Servers
	SWIFT Module Configuration Information
	Trading Networks Configuration Information

	Clustering Implementation Considerations
	AFT Transport
	CASmf Transport
	MQHA Transport

	D Examples of Data PDU Content of Documents
	Data PDU Content of Different Types of Notifications
	Data PDU Content of a Delivery Notification Example
	Data PDU Content of a Delivery Report Example
	Data PDU Content of a History Report Example
	Data PDU Content of a Transmission Report Example

	MT/MX Message Data PDU Content
	MT Message Data PDU Content Example
	MX Message Data PDU Content Example
	xmldata (Data PDU)
	MX Header
	MX Document

